Spaces:
Running
Running
oceansweep
commited on
Commit
•
0dcbd33
1
Parent(s):
4f8b3dc
Update Dockerfile
Browse files- Dockerfile +89 -89
Dockerfile
CHANGED
@@ -1,89 +1,89 @@
|
|
1 |
-
# This is the same dockerfile from `Helper_Files/Dockerfiles/tldw-nvidia_amd64_Dockerfile`. c/p here so people see a 'Dockerfile' in the root directory and know what to do.
|
2 |
-
# Usage
|
3 |
-
# docker build -t tldw-nvidia_amd64 .
|
4 |
-
# docker run --gpus=all -p 7860:7860 -v tldw_volume:/tldw tldw-nvidia_amd64
|
5 |
-
#
|
6 |
-
# If the above command doesn't work and it hangs on start, use the following command:
|
7 |
-
#
|
8 |
-
# sudo docker run -it -p 7860:7860 -v tldw_volume:/tdlw tldw-nvidia_amd64 bash
|
9 |
-
#
|
10 |
-
# Once in the container, run the following command:
|
11 |
-
#
|
12 |
-
# python summarize.py -gui
|
13 |
-
#
|
14 |
-
# And you should be good.
|
15 |
-
|
16 |
-
# Use Nvidia image:
|
17 |
-
FROM nvidia/cuda:12.6.1-cudnn-runtime-ubuntu24.04
|
18 |
-
|
19 |
-
# Use an official Python runtime as a parent image
|
20 |
-
#FROM python:3.10.15-slim-bookworm
|
21 |
-
|
22 |
-
|
23 |
-
# Set build arguments
|
24 |
-
ARG REPO_URL=https://github.com/rmusser01/tldw.git
|
25 |
-
ARG BRANCH=main
|
26 |
-
ARG GPU_SUPPORT=cpu
|
27 |
-
|
28 |
-
# Install system dependencies
|
29 |
-
RUN apt-get update && apt-get install -y \
|
30 |
-
ffmpeg \
|
31 |
-
libsqlite3-dev \
|
32 |
-
build-essential \
|
33 |
-
git \
|
34 |
-
python3 \
|
35 |
-
python3-pyaudio \
|
36 |
-
portaudio19-dev \
|
37 |
-
python3-pip \
|
38 |
-
portaudio19-dev \
|
39 |
-
python3-venv \
|
40 |
-
&& rm -rf /var/lib/apt/lists/*
|
41 |
-
|
42 |
-
# Set the working directory in the container
|
43 |
-
WORKDIR /tldw
|
44 |
-
|
45 |
-
# Clone the repository
|
46 |
-
RUN git clone -b ${BRANCH} ${REPO_URL} .
|
47 |
-
|
48 |
-
# Create and activate virtual environment
|
49 |
-
RUN python3 -m venv ./venv
|
50 |
-
ENV PATH="/tldw/venv/bin:$PATH"
|
51 |
-
|
52 |
-
# Upgrade pip and install wheel
|
53 |
-
RUN pip install --upgrade pip wheel
|
54 |
-
|
55 |
-
# Install CUDA
|
56 |
-
RUN pip install nvidia-cublas-cu12 nvidia-cudnn-cu12
|
57 |
-
|
58 |
-
# setup PATH
|
59 |
-
RUN export LD_LIBRARY_PATH=`python3 -c 'import os; import nvidia.cublas.lib; import nvidia.cudnn.lib; print(os.path.dirname(nvidia.cublas.lib.__file__) + ":" + os.path.dirname(nvidia.cudnn.lib.__file__))'`
|
60 |
-
|
61 |
-
|
62 |
-
# Install PyTorch based on GPU support
|
63 |
-
RUN if [ "$GPU_SUPPORT" = "cuda" ]; then \
|
64 |
-
pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu123; \
|
65 |
-
elif [ "$GPU_SUPPORT" = "amd" ]; then \
|
66 |
-
pip install torch-directml; \
|
67 |
-
else \
|
68 |
-
pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cpu; \
|
69 |
-
fi
|
70 |
-
|
71 |
-
# Install other requirements
|
72 |
-
RUN pip install -r requirements.txt
|
73 |
-
|
74 |
-
# Update config.txt for CPU if needed
|
75 |
-
RUN if [ "$GPU_SUPPORT" = "cpu" ]; then \
|
76 |
-
sed -i 's/cuda/cpu/' ./Config_Files/config.txt; \
|
77 |
-
fi
|
78 |
-
|
79 |
-
# Create a volume for persistent storage
|
80 |
-
VOLUME /tldw
|
81 |
-
|
82 |
-
# Make port 7860 available to the world outside this container
|
83 |
-
EXPOSE 7860
|
84 |
-
|
85 |
-
# Set listening to all interfaces
|
86 |
-
ENV GRADIO_SERVER_NAME="0.0.0.0"
|
87 |
-
|
88 |
-
# Run the application
|
89 |
-
CMD ["python", "summarize.py", "-gui"]
|
|
|
1 |
+
# This is the same dockerfile from `Helper_Files/Dockerfiles/tldw-nvidia_amd64_Dockerfile`. c/p here so people see a 'Dockerfile' in the root directory and know what to do.
|
2 |
+
# Usage
|
3 |
+
# docker build -t tldw-nvidia_amd64 .
|
4 |
+
# docker run --gpus=all -p 7860:7860 -v tldw_volume:/tldw tldw-nvidia_amd64
|
5 |
+
#
|
6 |
+
# If the above command doesn't work and it hangs on start, use the following command:
|
7 |
+
#
|
8 |
+
# sudo docker run -it -p 7860:7860 -v tldw_volume:/tdlw tldw-nvidia_amd64 bash
|
9 |
+
#
|
10 |
+
# Once in the container, run the following command:
|
11 |
+
#
|
12 |
+
# python summarize.py -gui
|
13 |
+
#
|
14 |
+
# And you should be good.
|
15 |
+
|
16 |
+
# Use Nvidia image:
|
17 |
+
FROM nvidia/cuda:12.6.1-cudnn-runtime-ubuntu24.04
|
18 |
+
|
19 |
+
# Use an official Python runtime as a parent image
|
20 |
+
#FROM python:3.10.15-slim-bookworm
|
21 |
+
|
22 |
+
|
23 |
+
# Set build arguments
|
24 |
+
ARG REPO_URL=https://github.com/rmusser01/tldw.git
|
25 |
+
ARG BRANCH=main
|
26 |
+
ARG GPU_SUPPORT=cpu
|
27 |
+
|
28 |
+
# Install system dependencies
|
29 |
+
RUN apt-get update && apt-get install -y \
|
30 |
+
ffmpeg \
|
31 |
+
libsqlite3-dev \
|
32 |
+
build-essential \
|
33 |
+
git \
|
34 |
+
python3 \
|
35 |
+
python3-pyaudio \
|
36 |
+
portaudio19-dev \
|
37 |
+
python3-pip \
|
38 |
+
portaudio19-dev \
|
39 |
+
python3-venv \
|
40 |
+
&& rm -rf /var/lib/apt/lists/*
|
41 |
+
|
42 |
+
# Set the working directory in the container
|
43 |
+
WORKDIR /tldw
|
44 |
+
|
45 |
+
# Clone the repository
|
46 |
+
RUN git clone -b ${BRANCH} ${REPO_URL} .
|
47 |
+
|
48 |
+
# Create and activate virtual environment
|
49 |
+
RUN python3 -m venv ./venv
|
50 |
+
ENV PATH="/tldw/venv/bin:$PATH"
|
51 |
+
|
52 |
+
# Upgrade pip and install wheel
|
53 |
+
RUN pip install --upgrade pip wheel
|
54 |
+
|
55 |
+
# Install CUDA
|
56 |
+
RUN pip install nvidia-cublas-cu12 nvidia-cudnn-cu12
|
57 |
+
|
58 |
+
# setup PATH
|
59 |
+
RUN export LD_LIBRARY_PATH=`python3 -c 'import os; import nvidia.cublas.lib; import nvidia.cudnn.lib; print(os.path.dirname(nvidia.cublas.lib.__file__) + ":" + os.path.dirname(nvidia.cudnn.lib.__file__))'`
|
60 |
+
|
61 |
+
|
62 |
+
# Install PyTorch based on GPU support
|
63 |
+
RUN if [ "$GPU_SUPPORT" = "cuda" ]; then \
|
64 |
+
pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu123; \
|
65 |
+
elif [ "$GPU_SUPPORT" = "amd" ]; then \
|
66 |
+
pip install torch-directml; \
|
67 |
+
else \
|
68 |
+
pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cpu; \
|
69 |
+
fi
|
70 |
+
|
71 |
+
# Install other requirements
|
72 |
+
RUN pip install -r requirements.txt
|
73 |
+
|
74 |
+
# Update config.txt for CPU if needed
|
75 |
+
RUN if [ "$GPU_SUPPORT" = "cpu" ]; then \
|
76 |
+
sed -i 's/cuda/cpu/' ./Config_Files/config.txt; \
|
77 |
+
fi
|
78 |
+
|
79 |
+
# Create a volume for persistent storage
|
80 |
+
VOLUME /tldw
|
81 |
+
|
82 |
+
# Make port 7860 available to the world outside this container
|
83 |
+
EXPOSE 7860
|
84 |
+
|
85 |
+
# Set listening to all interfaces
|
86 |
+
ENV GRADIO_SERVER_NAME="0.0.0.0"
|
87 |
+
|
88 |
+
# Run the application
|
89 |
+
CMD ["python", "summarize.py", "-gui", "-log DEBUG"]
|