File size: 12,203 Bytes
1be405f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b37420e
1be405f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# RAG_QA_Chat_Notes.py
# Description: This file contains the code for the RAG QA Chat Notes tab in the RAG QA Chat application.
#
# Imports
import logging
# External Imports
import gradio as gr
#
# Local Imports
from App_Function_Libraries.DB.RAG_QA_Chat_DB import save_message, add_keywords_to_conversation, \
    search_conversations_by_keywords, load_chat_history, save_notes, get_notes, clear_notes, \
    add_keywords_to_note, execute_query, start_new_conversation
from App_Function_Libraries.RAG.RAG_QA_Chat import rag_qa_chat
#
####################################################################################################
#
# Functions
def create_rag_qa_chat_notes_tab():
    with gr.TabItem("RAG QA Chat", visible=True):
        gr.Markdown("# RAG QA Chat")

        state = gr.State({
            "conversation_id": None,
            "page": 1,
            "context_source": "Entire Media Database",
        })

        with gr.Row():
            with gr.Column(scale=1):
                context_source = gr.Radio(
                    ["Entire Media Database", "Search Database", "Upload File"],
                    label="Context Source",
                    value="Entire Media Database"
                )
                existing_file = gr.Dropdown(label="Select Existing File", choices=[], interactive=True)
                file_page = gr.State(value=1)
                with gr.Row():
                    page_number = gr.Number(value=1, label="Page", precision=0)
                    page_size = gr.Number(value=20, label="Items per page", precision=0)
                    total_pages = gr.Number(label="Total Pages", interactive=False)
                with gr.Row():
                    prev_page_btn = gr.Button("Previous Page")
                    next_page_btn = gr.Button("Next Page")
                    page_info = gr.HTML("Page 1")

                search_query = gr.Textbox(label="Search Query", visible=False)
                search_button = gr.Button("Search", visible=False)
                search_results = gr.Dropdown(label="Search Results", choices=[], visible=False)
                file_upload = gr.File(
                    label="Upload File",
                    visible=False,
                    file_types=["txt", "pdf", "epub", "md", "rtf", "json", "csv"]
                )
                convert_to_text = gr.Checkbox(label="Convert to plain text", visible=False)
                keywords = gr.Textbox(label="Keywords (comma-separated)", visible=False)
            with gr.Column(scale=1):
                api_choice = gr.Dropdown(
                    choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter",
                             "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace"],
                    label="Select API for RAG",
                    value="OpenAI"
                )
                use_query_rewriting = gr.Checkbox(label="Use Query Rewriting", value=True)

                # FIXME - add load conversations button
                load_conversation = gr.Dropdown(label="Load Conversation", choices=[])
                new_conversation = gr.Button("New Conversation")
                conversation_title = gr.Textbox(label="Conversation Title",
                                                placeholder="Enter a title for the new conversation")

        with gr.Row():
            with gr.Column(scale=2):
                chatbot = gr.Chatbot(height=500)
                msg = gr.Textbox(label="Enter your message")
                submit = gr.Button("Submit")
                clear_chat = gr.Button("Clear Chat History")

            with gr.Column(scale=1):
                notes = gr.TextArea(label="Notes", placeholder="Enter your notes here...", lines=20)
                keywords_for_notes = gr.Textbox(label="Keywords for Notes (comma-separated)",
                                                placeholder="Enter keywords for the note", visible=True)
                save_notes_btn = gr.Button("Save Notes")  # Renamed to avoid conflict
                clear_notes_btn = gr.Button("Clear Notes")  # Renamed to avoid conflict

        loading_indicator = gr.HTML(visible=False)

        def rag_qa_chat_wrapper(message, history, state, context_source, existing_file, search_results, file_upload,

                                convert_to_text, keywords, api_choice, use_query_rewriting):
            try:
                conversation_id = state.value["conversation_id"]
                if not conversation_id:
                    conversation_id = start_new_conversation("Untitled Conversation")  # Provide a title or handle accordingly
                    state = update_state(state, conversation_id=conversation_id)

                save_message(conversation_id, 'human', message)

                if keywords:
                    add_keywords_to_conversation(conversation_id, [kw.strip() for kw in keywords.split(',')])

                # Implement your actual RAG logic here
                response = "response"#rag_qa_chat(message, conversation_id, context_source, existing_file, search_results,
                                       #file_upload, convert_to_text, api_choice, use_query_rewriting)

                save_message(conversation_id, 'ai', response)

                new_history = history + [(message, response)]

                logging.info(f"Successfully processed message for conversation '{conversation_id}'")
                return new_history, "", gr.update(visible=False), state

            except Exception as e:
                logging.error(f"Error in rag_qa_chat_wrapper: {e}")
                gr.Error("An unexpected error occurred. Please try again later.")
                return history, "", gr.update(visible=False), state

        def load_conversation_history(selected_conversation_id, page, page_size, state):
            if selected_conversation_id:
                history, total_pages_val, _ = load_chat_history(selected_conversation_id, page, page_size)
                notes_content = get_notes(selected_conversation_id)  # Retrieve notes here
                updated_state = update_state(state, conversation_id=selected_conversation_id, page=page)
                return history, total_pages_val, updated_state, "\n".join(notes_content)
            return [], 1, state, ""

        def start_new_conversation_wrapper(title, state):
            new_conversation_id = start_new_conversation(title if title else "Untitled Conversation")
            return [], update_state(state, conversation_id=new_conversation_id, page=1)

        def update_state(state, **kwargs):
            new_state = state.value.copy()
            new_state.update(kwargs)
            return new_state

        def update_page(direction, current_page, total_pages_val):
            new_page = max(1, min(current_page + direction, total_pages_val))
            return new_page

        def update_context_source(choice):
            return {
                existing_file: gr.update(visible=choice == "Select Existing File"),
                prev_page_btn: gr.update(visible=choice == "Search Database"),
                next_page_btn: gr.update(visible=choice == "Search Database"),
                page_info: gr.update(visible=choice == "Search Database"),
                search_query: gr.update(visible=choice == "Search Database"),
                search_button: gr.update(visible=choice == "Search Database"),
                search_results: gr.update(visible=choice == "Search Database"),
                file_upload: gr.update(visible=choice == "Upload File"),
                convert_to_text: gr.update(visible=choice == "Upload File"),
                keywords: gr.update(visible=choice == "Upload File")
            }

        def perform_search(query):
            try:
                results = search_conversations_by_keywords([kw.strip() for kw in query.split()])
                return gr.update(choices=[f"{title} (ID: {id})" for id, title in results[0]])
            except Exception as e:
                logging.error(f"Error performing search: {e}")
                gr.Error(f"Error performing search: {str(e)}")
                return gr.update(choices=[])

        def clear_chat_history():
            return [], ""

        def save_notes_function(notes_content, keywords_content):
            """Save the notes and associated keywords to the database."""
            conversation_id = state.value["conversation_id"]
            if conversation_id and notes_content:
                # Save the note
                save_notes(conversation_id, notes_content)

                # Get the last inserted note ID
                query = "SELECT id FROM rag_qa_notes WHERE conversation_id = ? ORDER BY timestamp DESC LIMIT 1"
                note_id = execute_query(query, (conversation_id,))[0][0]

                if keywords_content:
                    add_keywords_to_note(note_id, [kw.strip() for kw in keywords_content.split(',')])

                logging.info("Notes and keywords saved successfully!")
                return notes_content
            else:
                logging.warning("No conversation ID or notes to save.")
                return ""

        def clear_notes_function():
            """Clear notes for the current conversation."""
            conversation_id = state.value["conversation_id"]
            if conversation_id:
                clear_notes(conversation_id)
                logging.info("Notes cleared successfully!")
            return ""

        # Event handlers
        submit.click(
            rag_qa_chat_wrapper,
            inputs=[msg, chatbot, state, context_source, existing_file, search_results, file_upload,
                    convert_to_text, keywords, api_choice, use_query_rewriting],
            outputs=[chatbot, msg, loading_indicator, state]
        )

        load_conversation.change(
            load_conversation_history,
            inputs=[load_conversation, page_number, page_size, state],
            outputs=[chatbot, total_pages, state, notes]
        )

        new_conversation.click(
            start_new_conversation_wrapper,
            inputs=[conversation_title, state],
            outputs=[chatbot, state]
        )

        # Pagination Event handlers
        prev_page_btn.click(
            lambda current_page, total_pages_val: update_page(-1, current_page, total_pages_val),
            inputs=[page_number, total_pages],
            outputs=[page_number]
        )

        next_page_btn.click(
            lambda current_page, total_pages_val: update_page(1, current_page, total_pages_val),
            inputs=[page_number, total_pages],
            outputs=[page_number]
        )

        context_source.change(update_context_source, inputs=[context_source],
                              outputs=[existing_file, prev_page_btn, next_page_btn, page_info,
                                       search_query, search_button, search_results,
                                       file_upload, convert_to_text, keywords])

        search_button.click(perform_search, inputs=[search_query], outputs=[search_results])

        clear_chat.click(clear_chat_history, outputs=[chatbot, msg])

        save_notes_btn.click(save_notes_function, inputs=[notes, keywords_for_notes], outputs=[notes])
        clear_notes_btn.click(clear_notes_function, outputs=[notes])

    return (context_source, existing_file, search_query, search_button, search_results, file_upload,
            convert_to_text, keywords, api_choice, use_query_rewriting, chatbot, msg, submit, clear_chat,
            notes, save_notes_btn, clear_notes_btn, load_conversation, new_conversation, conversation_title,
            prev_page_btn, next_page_btn, page_number, page_size, total_pages)

#
# End of RAG_QA_Chat_Notes.py
####################################################################################################