import { AutoProcessor, RawImage, AutoModel } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers'; const status = document.getElementById('status'); const fileSelect = document.getElementById('file-select'); const imageContainer = document.getElementById('image-container'); const outputContainer = document.getElementById('output-container'); status.textContent = 'Loading model...'; // Load model and processor const model = await AutoModel.from_pretrained('Xenova/modnet-onnx', { quantized: false }); const processor = await AutoProcessor.from_pretrained('Xenova/modnet-onnx'); status.textContent = 'Ready'; // Load image from URL const url = 'https://images.pexels.com/photos/5965592/pexels-photo-5965592.jpeg?auto=compress&cs=tinysrgb&w=1024'; function useRemoteImage(url) { const image = document.createElement('img'); image.src = url; imageContainer.appendChild(image); start(url); } useRemoteImage(url) fileSelect.addEventListener('change', function (e) { const file = e.target.files[0]; if (!file) { return; } const reader = new FileReader(); // Set up a callback when the file is loaded reader.onload = function (e2) { status.textContent = 'Image loaded'; imageContainer.innerHTML = ''; outputContainer.innerHTML = ''; const image = document.createElement('img'); image.src = e2.target.result; imageContainer.appendChild(image); start(image.src); }; reader.readAsDataURL(file); }); async function start(source) { status.textContent = 'processing'; console.log('start process') const image = await RawImage.read(source); // Process image const { pixel_values: input } = await processor(image); // Predict alpha matte const { output } = await model({ input }); console.log('image', RawImage) // Convert output tensor to RawImage const matteImage = await RawImage.fromTensor(output[0].mul(255).to('uint8')).resize(image.width, image.height); console.log('matteImage', matteImage, output) status.textContent = 'Finish'; async function renderRawImage(image) { let rawCanvas = await image.toCanvas(); const canvas = document.createElement('canvas'); outputContainer.appendChild(canvas); // 将新创建的 Canvas 添加到页面中 canvas.width = image.width; canvas.height = image.height; const ctx = canvas.getContext('2d'); ctx.drawImage(rawCanvas, 0, 0); } // renderRawImage(matteImage) async function getForeground(rawImage, maskImage) { const rawCanvas = rawImage.toCanvas(); const rawCtx = rawCanvas.getContext('2d'); const maskCanvas = maskImage.toCanvas(); const maskCtx = maskCanvas.getContext('2d'); const rawImageData = rawCtx.getImageData(0, 0, rawCanvas.width, rawCanvas.height); const maskImageData = maskCtx.getImageData(0, 0, maskCanvas.width, maskCanvas.height); for (let i = 0; i < rawImageData.data.length; i += 4) { // 把灰度通道值(RGB 都一样,这里取 R),赋到原图的透明通道(每个像素的第 4 个值) rawImageData.data[i + 3] = maskImageData.data[i]; } rawCtx.putImageData(rawImageData, 0, 0); return rawCanvas; } let foregroundCanvas = await getForeground(image, matteImage); // 使用示例: console.log('debug', foregroundCanvas); // 模拟异步操作,确保在完成操作后才继续执行 foregroundCanvas.convertToBlob() .then(function (blob) { // 创建图片 let img = new Image(); // 创建 blob URL 并设置为图片的 src img.src = URL.createObjectURL(blob); // 将图片添加到 body 中或者其他 HTML 元素 outputContainer.appendChild(img); }) .catch(function (error) { // 捕获和处理 blob 创建过程中可能出现的错误 console.error("Blob creation error: ", error); }); }