import os from typing import List import pandas as pd DATASET_DIRECTORY = "dataset" # COLUMNS_MAPPING = { # "config.name": "Quantization", # "config.backend.model": "Model", # # primary measurements # "report.prefill.throughput.value": "Prefill (tokens/s)", # "report.decode.throughput.value": "Decode (tokens/s)", # "report.memory": "Model Size (GB)", # # deployment settings # "config.backend.name": "Backend", # "quantization": "Quantization", # # additional information # "#Params (B)": "Params (B)", # } SORTING_COLUMNS = ["Model Size (GB)", "Decode (tokens/s)", "Prefill (tokens/s)", "MMLU Accuracy"] SORTING_ASCENDING = [False, True, True, True] def get_raw_llm_perf_df( machine: str, backends: List[str], hardware_type: str ): dfs = [] try: dfs.append( pd.read_csv("/Users/arnavchavan/leaderboard/benchmark_results_with_mmlu.csv") # pd.read_csv( # f"hf://datasets/nyunai/edge-llm-leaderboard/perf-df-{hardware_type}-{machine}-{backends}.csv" # ) ) except Exception: print("Dataset not found for:") print(f" • Machine: {machine}") print(f" • Hardware Type: {hardware_type}") url = f"https://huggingface.co/datasets/nyunai/edge-llm-leaderboard/blob/main/perf-df-{hardware_type}-{machine}-{backends}.csv" print(f" • URL: {url}") if len(dfs) == 0: raise ValueError( f"No datasets found for machine {machine}, check your hardware.yml config file or your datatset on huggingface" ) perf_df = pd.concat(dfs) # llm_df = pd.read_csv( # "hf://datasets/optimum-benchmark/llm-perf-leaderboard/llm-df.csv" # ) # llm_perf_df = pd.merge( # llm_df, perf_df, left_on="Model", right_on="config.backend.model" # ) return perf_df def processed_llm_perf_df(llm_perf_df): # llm_perf_df["architecture"] = llm_perf_df["config.backend.model"].apply( # process_architectures # ) # round numerical columns llm_perf_df = llm_perf_df.round( { "Prefill (tokens/s)": 3, "Decode (tokens/s)": 3, "Model Size (GB)": 3, "#Params (B)": 3, "MMLU Accuracy": 1, } ) # sort by metric llm_perf_df.sort_values( by=SORTING_COLUMNS, ascending=SORTING_ASCENDING, inplace=True, ) return llm_perf_df def get_llm_perf_df( machine: str, backends: List[str], hardware_type: str ): if not os.path.exists(DATASET_DIRECTORY): os.makedirs(DATASET_DIRECTORY) if os.path.exists(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv"): llm_perf_df = pd.read_csv( f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv" ) else: print(f"Dataset machine {machine} not found, downloading...") llm_perf_df = get_raw_llm_perf_df(machine, backends, hardware_type) llm_perf_df = processed_llm_perf_df(llm_perf_df) llm_perf_df.to_csv( f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv", index=False ) return llm_perf_df