import streamlit as st from transformers import pipeline # function part # img2text def img2text(url): image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") text = image_to_text_model(url)[0]["generated_text"] return text # text2story def text2story(text): text_to_story_model = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2") story_text = text_to_story_model(text)[0]["generated_text"] return story_text # text2audio def text2audio(story_text): text_to_audio_model = pipeline("text-to-speech", model="facebook/mms-tts-eng") audio_data = text_to_audio_model(story_text) return audio_data # Main Part st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜") st.header("Turn Your Image to Audio Story") uploaded_file = st.file_uploader("Select an Image...") if uploaded_file is not None: print(uploaded_file) bytes_data = uploaded_file.getvalue() with open(uploaded_file.name, "wb") as file: file.write(bytes_data) st.image(uploaded_file, caption="Uploaded Image", use_container_width=True) # Stage 1: Image to Text if "scenario" not in st.session_state: st.text('Processing img2text...') st.session_state.scenario = img2text(uploaded_file.name) st.subheader("Caption:") st.write(st.session_state.scenario) # Stage 2: Text to Story if "story" not in st.session_state: st.text('Generating a story...') st.session_state.story = text2story(st.session_state.scenario) st.subheader("Story:") st.write(st.session_state.story) # Stage 3: Story to Audio if "audio_data" not in st.session_state: st.text('Generating audio...') st.session_state.audio_data = text2audio(st.session_state.story) # Play Button if st.button("Play Audio"): st.audio( st.session_state.audio_data['audio'], format="audio/wav", start_time=0, sample_rate=st.session_state.audio_data['sampling_rate'] )