import io import inspect import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import math import torch import random import torch.nn.functional as F import tempfile import gradio as gr import spaces import httpimport import json from PIL import Image from packaging import version from PIL.PngImagePlugin import PngInfo with httpimport.remote_repo(os.getenv("MODULE_URL")): import pipeline pipe, pipe2, pipe_img2img, pipe2_img2img = pipeline.get_pipeline_initialize() theme = gr.themes.Base(font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif']) device="cuda" pipe = pipe.to(device) pipe2 = pipe2.to(device) PRESET_Q = "year_2022, best quality, high quality, very aesthetic" NEGATIVE_PROMPT = "lowres, worst quality, displeasing, bad anatomy, text, error, extra digit, cropped, error, fewer, extra, missing, worst quality, jpeg artifacts, censored, worst quality displeasing, bad quality" import hashlib import base64 import hmac import numpy as np import pickle import requests import codecs def tpu_inference_api( prompt: str, radio: str = "model-v2", preset: str = "year_2022, best quality, high quality, very aesthetic", h: int = 1216, w: int = 832, negative_prompt: str = "lowres, worst quality, displeasing, bad anatomy, text, error, extra digit, cropped, error, fewer, extra, missing, worst quality, jpeg artifacts, censored, ai-generated worst quality displeasing, bad quality", guidance_scale: float = 4.0, randomize_seed: bool = True, seed: int = 42, do_img2img: bool = False, init_image: Optional[str] = None, image2image_strength: float = 0, inference_steps = 25, ) -> bytes: url = os.getenv("TPU_INFERENCE_API") if(randomize_seed): seed = random.randint(0, 9007199254740991) randomize_seed = False payload = { "prompt": prompt, "radio": radio, "preset": preset, "height": h, "width": w, "negative_prompt": negative_prompt, "guidance_scale": guidance_scale, "randomize_seed": randomize_seed, "seed": seed, "do_img2img": do_img2img, "image2image_strength": image2image_strength, "init_image": init_image, "inference_steps": inference_steps, } response = requests.post(url, json=payload) if response.status_code != 200: raise Exception(f"Error calling API: {response.status_code} - {response.text}") image = Image.open(io.BytesIO(response.content)) naifix = prompt[:40].replace(":", "_").replace("\\", "_").replace("/", "_") + f" s-{seed}-" with tempfile.NamedTemporaryFile(prefix=naifix, suffix=".png", delete=False) as tmpfile: parameters = { "prompt": prompt, "steps": 25, "height": h, "width": w, "scale": guidance_scale, "uncond_scale": 0.0, "cfg_rescale": 0.0, "seed": seed, "n_samples": 1, "hide_debug_overlay": False, "noise_schedule": "native", "legacy_v3_extend": False, "reference_information_extracted_multiple": [], "reference_strength_multiple": [], "sampler": "k_dpmpp_2m_sde", "controlnet_strength": 1.0, "controlnet_model": None, "dynamic_thresholding": False, "dynamic_thresholding_percentile": 0.999, "dynamic_thresholding_mimic_scale": 10.0, "sm": False, "sm_dyn": False, "skip_cfg_above_sigma": 23.69030960605558, "skip_cfg_below_sigma": 0.0, "lora_unet_weights": None, "lora_clip_weights": None, "deliberate_euler_ancestral_bug": True, "prefer_brownian": False, "cfg_sched_eligibility": "enable_for_post_summer_samplers", "explike_fine_detail": False, "minimize_sigma_inf": False, "uncond_per_vibe": True, "wonky_vibe_correlation": True, "version": 1, "uc": "nsfw, lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract],{{{{chibi,doll,+_+}}}},", } metadata_params = { "request_type": "PromptGenerateRequest", "signed_hash": sign_message(json.dumps(parameters), "novelai-client"), **parameters } metadata = PngInfo() metadata.add_text("Title", "AI generated image") metadata.add_text("Description", prompt) metadata.add_text("Software", "NovelAI") metadata.add_text("Source", "Stable Diffusion XL 7BCCAA2C") metadata.add_text("Nya", "Nya~") metadata.add_text("Generation time", f"1.{random.randint(1000000000, 9999999999)}") metadata.add_text("Comment", json.dumps(metadata_params)) image.save(tmpfile, "png", pnginfo=metadata) return tmpfile.name, seed def sign_message(message, key): hmac_digest = hmac.new(key.encode(), message.encode(), hashlib.sha512).digest() signed_hash = base64.b64encode(hmac_digest).decode() return signed_hash def run(prompt, radio="model-v2", preset=PRESET_Q, h=1216, w=832, negative_prompt=NEGATIVE_PROMPT, guidance_scale=4.0, randomize_seed=True, seed=42, tpu_inference=False, do_img2img=False, init_image=None, image2image_resize=False, image2image_strength=0, inference_steps=25, progress=gr.Progress(track_tqdm=True)): if init_image is None: do_img2img = False if do_img2img and image2image_resize: # init_image: np.ndarray init_image = Image.fromarray(init_image) init_image = init_image.resize((w, h)) init_image = np.array(init_image) if tpu_inference: prompt = prompt.replace("!", " ").replace("\n", " ") # remote endpoint unsupported if do_img2img: init_image = codecs.encode(pickle.dumps(init_image, protocol=pickle.HIGHEST_PROTOCOL), "base64").decode('latin1') return tpu_inference_api(prompt, radio, preset, h, w, negative_prompt, guidance_scale, randomize_seed, seed, do_img2img, init_image, image2image_strength, inference_steps=inference_steps) else: return tpu_inference_api(prompt, radio, preset, h, w, negative_prompt, guidance_scale, randomize_seed, seed, inference_steps=inference_steps) return zero_inference_api(prompt, radio, preset, h, w, negative_prompt, guidance_scale, randomize_seed, seed, do_img2img, init_image, image2image_strength, inference_steps=inference_steps) @spaces.GPU def zero_inference_api(prompt, radio="model-v2", preset=PRESET_Q, h=1216, w=832, negative_prompt=NEGATIVE_PROMPT, guidance_scale=4.0, randomize_seed=True, seed=42, do_img2img=False, init_image=None, image2image_strength=0, inference_steps=25, progress=gr.Progress(track_tqdm=True)): prompt = prompt.strip() + ", " + preset.strip() negative_prompt = negative_prompt.strip() if negative_prompt and negative_prompt.strip() else None print(f"Initial seed for prompt `{prompt}`", seed) if(randomize_seed): seed = random.randint(0, 9007199254740991) if not prompt and not negative_prompt: guidance_scale = 0.0 generator = torch.Generator(device="cuda").manual_seed(seed) if inference_steps > 50: inference_steps = 50 if not do_img2img: if radio == "model-v2": image = pipe(prompt, height=h, width=w, negative_prompt=negative_prompt, guidance_scale=guidance_scale, guidance_rescale=0.75, generator=generator, num_inference_steps=inference_steps).images[0] else: image = pipe2(prompt, height=h, width=w, negative_prompt=negative_prompt, guidance_scale=guidance_scale, guidance_rescale=0.75, generator=generator, num_inference_steps=inference_steps).images[0] else: init_image = Image.fromarray(init_image) if radio == "model-v2": image = pipe_img2img(prompt, image=init_image, strength=image2image_strength, negative_prompt=negative_prompt, guidance_scale=guidance_scale, generator=generator, num_inference_steps=inference_steps).images[0] else: image = pipe2_img2img(prompt, image=init_image, strength=image2image_strength, negative_prompt=negative_prompt, guidance_scale=guidance_scale, generator=generator, num_inference_steps=inference_steps).images[0] naifix = prompt[:40].replace(":", "_").replace("\\", "_").replace("/", "_") + f" s-{seed}-" with tempfile.NamedTemporaryFile(prefix=naifix, suffix=".png", delete=False) as tmpfile: parameters = { "prompt": prompt, "steps": inference_steps, "height": h, "width": w, "scale": guidance_scale, "uncond_scale": 0.0, "cfg_rescale": 0.0, "seed": seed, "n_samples": 1, "hide_debug_overlay": False, "noise_schedule": "native", "legacy_v3_extend": False, "reference_information_extracted_multiple": [], "reference_strength_multiple": [], "sampler": "k_dpmpp_2m_sde", "controlnet_strength": 1.0, "controlnet_model": None, "dynamic_thresholding": False, "dynamic_thresholding_percentile": 0.999, "dynamic_thresholding_mimic_scale": 10.0, "sm": False, "sm_dyn": False, "skip_cfg_above_sigma": 23.69030960605558, "skip_cfg_below_sigma": 0.0, "lora_unet_weights": None, "lora_clip_weights": None, "deliberate_euler_ancestral_bug": True, "prefer_brownian": False, "cfg_sched_eligibility": "enable_for_post_summer_samplers", "explike_fine_detail": False, "minimize_sigma_inf": False, "uncond_per_vibe": True, "wonky_vibe_correlation": True, "version": 1, "uc": "nsfw, lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract],{{{{chibi,doll,+_+}}}},", } metadata_params = { "request_type": "PromptGenerateRequest", "signed_hash": sign_message(json.dumps(parameters), "novelai-client"), **parameters } metadata = PngInfo() metadata.add_text("Title", "AI generated image") metadata.add_text("Description", prompt) metadata.add_text("Software", "NovelAI") metadata.add_text("Source", "Stable Diffusion XL 7BCCAA2C") metadata.add_text("Nya", "Nya~") metadata.add_text("Generation time", f"1.{random.randint(1000000000, 9999999999)}") metadata.add_text("Comment", json.dumps(metadata_params)) image.save(tmpfile, "png", pnginfo=metadata) return tmpfile.name, seed with gr.Blocks(theme=theme) as demo: gr.Markdown('''# SDXL Experiments Just a simple demo for some SDXL model.''') with gr.Row(): with gr.Column(): with gr.Group(): with gr.Row(): prompt = gr.Textbox(show_label=False, scale=5, value="1girl, rurudo", placeholder="Your prompt", info="Leave blank to test unconditional generation") button = gr.Button("Generate", min_width=120) preset = gr.Textbox(show_label=False, scale=5, value=PRESET_Q, info="Quality presets") radio = gr.Radio(["model-v2-beta", "model-v2"], value="model-v2", label = "Choose the inference model") inference_steps = gr.Slider(label="Inference Steps", value=25, minimum=4, maximum=50, step=1) with gr.Row(): height = gr.Slider(label="Height", value=1216, minimum=512, maximum=2560, step=64) width = gr.Slider(label="Width", value=832, minimum=512, maximum=2560, step=64) guidance_scale = gr.Number(label="CFG Guidance Scale", info="The guidance scale for CFG, ignored if no prompt is entered (unconditional generation)", value=4.0) negative_prompt = gr.Textbox(label="Negative prompt", value=NEGATIVE_PROMPT, info="Is only applied for the CFG part, leave blank for unconditional generation") seed = gr.Number(label="Seed", value=42, info="Seed for random number generator") randomize_seed = gr.Checkbox(label="Randomize seed", value=True) tpu_inference = gr.Checkbox(label="TPU Inference", value=True) do_img2img = gr.Checkbox(label="Image to Image", value=False) init_image = gr.Image(label="Input Image", visible=False) image2image_resize = gr.Checkbox(label="Resize input image", value=False, visible=False) image2image_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Noising strength", value=0.7, visible=False) with gr.Column(): output = gr.Image(type="filepath", interactive=False) gr.Examples(fn=run, examples=["mayano_top_gun_\(umamusume\), 1girl, rurudo", "sho (sho lwlw),[[[ohisashiburi]]],fukuro daizi,tianliang duohe fangdongye,[daidai ookami],year_2023, (wariza), depth of field, official_art"], inputs=prompt, outputs=[output, seed], cache_examples="lazy") do_img2img.change( fn=lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)], inputs=[do_img2img], outputs=[init_image, image2image_resize, image2image_strength] ) gr.on( triggers=[ button.click, prompt.submit ], fn=run, inputs=[prompt, radio, preset, height, width, negative_prompt, guidance_scale, randomize_seed, seed, tpu_inference, do_img2img, init_image, image2image_resize, image2image_strength, inference_steps], outputs=[output, seed], concurrency_limit=1, ) if __name__ == "__main__": demo.launch(share=True)