# this file is adapted from https://github.com/victorca25/iNNfer from collections import OrderedDict import math import functools import torch import torch.nn as nn import torch.nn.functional as F #################### # RRDBNet Generator #################### class RRDBNet(nn.Module): def __init__(self, in_nc, out_nc, nf, nb, nr=3, gc=32, upscale=4, norm_type=None, act_type='leakyrelu', mode='CNA', upsample_mode='upconv', convtype='Conv2D', finalact=None, gaussian_noise=False, plus=False): super(RRDBNet, self).__init__() n_upscale = int(math.log(upscale, 2)) if upscale == 3: n_upscale = 1 self.resrgan_scale = 0 if in_nc % 16 == 0: self.resrgan_scale = 1 elif in_nc != 4 and in_nc % 4 == 0: self.resrgan_scale = 2 fea_conv = conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None, convtype=convtype) rb_blocks = [RRDB(nf, nr, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero', norm_type=norm_type, act_type=act_type, mode='CNA', convtype=convtype, gaussian_noise=gaussian_noise, plus=plus) for _ in range(nb)] LR_conv = conv_block(nf, nf, kernel_size=3, norm_type=norm_type, act_type=None, mode=mode, convtype=convtype) if upsample_mode == 'upconv': upsample_block = upconv_block elif upsample_mode == 'pixelshuffle': upsample_block = pixelshuffle_block else: raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode)) if upscale == 3: upsampler = upsample_block(nf, nf, 3, act_type=act_type, convtype=convtype) else: upsampler = [upsample_block(nf, nf, act_type=act_type, convtype=convtype) for _ in range(n_upscale)] HR_conv0 = conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type, convtype=convtype) HR_conv1 = conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None, convtype=convtype) outact = act(finalact) if finalact else None self.model = sequential(fea_conv, ShortcutBlock(sequential(*rb_blocks, LR_conv)), *upsampler, HR_conv0, HR_conv1, outact) def forward(self, x, outm=None): if self.resrgan_scale == 1: feat = pixel_unshuffle(x, scale=4) elif self.resrgan_scale == 2: feat = pixel_unshuffle(x, scale=2) else: feat = x return self.model(feat) class RRDB(nn.Module): """ Residual in Residual Dense Block (ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks) """ def __init__(self, nf, nr=3, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero', norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D', spectral_norm=False, gaussian_noise=False, plus=False): super(RRDB, self).__init__() # This is for backwards compatibility with existing models if nr == 3: self.RDB1 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type, norm_type, act_type, mode, convtype, spectral_norm=spectral_norm, gaussian_noise=gaussian_noise, plus=plus) self.RDB2 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type, norm_type, act_type, mode, convtype, spectral_norm=spectral_norm, gaussian_noise=gaussian_noise, plus=plus) self.RDB3 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type, norm_type, act_type, mode, convtype, spectral_norm=spectral_norm, gaussian_noise=gaussian_noise, plus=plus) else: RDB_list = [ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type, norm_type, act_type, mode, convtype, spectral_norm=spectral_norm, gaussian_noise=gaussian_noise, plus=plus) for _ in range(nr)] self.RDBs = nn.Sequential(*RDB_list) def forward(self, x): if hasattr(self, 'RDB1'): out = self.RDB1(x) out = self.RDB2(out) out = self.RDB3(out) else: out = self.RDBs(x) return out * 0.2 + x class ResidualDenseBlock_5C(nn.Module): """ Residual Dense Block The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18) Modified options that can be used: - "Partial Convolution based Padding" arXiv:1811.11718 - "Spectral normalization" arXiv:1802.05957 - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C. {Rakotonirina} and A. {Rasoanaivo} """ def __init__(self, nf=64, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero', norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D', spectral_norm=False, gaussian_noise=False, plus=False): super(ResidualDenseBlock_5C, self).__init__() self.noise = GaussianNoise() if gaussian_noise else None self.conv1x1 = conv1x1(nf, gc) if plus else None self.conv1 = conv_block(nf, gc, kernel_size, stride, bias=bias, pad_type=pad_type, norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype, spectral_norm=spectral_norm) self.conv2 = conv_block(nf+gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype, spectral_norm=spectral_norm) self.conv3 = conv_block(nf+2*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype, spectral_norm=spectral_norm) self.conv4 = conv_block(nf+3*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype, spectral_norm=spectral_norm) if mode == 'CNA': last_act = None else: last_act = act_type self.conv5 = conv_block(nf+4*gc, nf, 3, stride, bias=bias, pad_type=pad_type, norm_type=norm_type, act_type=last_act, mode=mode, convtype=convtype, spectral_norm=spectral_norm) def forward(self, x): x1 = self.conv1(x) x2 = self.conv2(torch.cat((x, x1), 1)) if self.conv1x1: x2 = x2 + self.conv1x1(x) x3 = self.conv3(torch.cat((x, x1, x2), 1)) x4 = self.conv4(torch.cat((x, x1, x2, x3), 1)) if self.conv1x1: x4 = x4 + x2 x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) if self.noise: return self.noise(x5.mul(0.2) + x) else: return x5 * 0.2 + x #################### # ESRGANplus #################### class GaussianNoise(nn.Module): def __init__(self, sigma=0.1, is_relative_detach=False): super().__init__() self.sigma = sigma self.is_relative_detach = is_relative_detach self.noise = torch.tensor(0, dtype=torch.float) def forward(self, x): if self.training and self.sigma != 0: self.noise = self.noise.to(x.device) scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x sampled_noise = self.noise.repeat(*x.size()).normal_() * scale x = x + sampled_noise return x def conv1x1(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) #################### # SRVGGNetCompact #################### class SRVGGNetCompact(nn.Module): """A compact VGG-style network structure for super-resolution. This class is copied from https://github.com/xinntao/Real-ESRGAN """ def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'): super(SRVGGNetCompact, self).__init__() self.num_in_ch = num_in_ch self.num_out_ch = num_out_ch self.num_feat = num_feat self.num_conv = num_conv self.upscale = upscale self.act_type = act_type self.body = nn.ModuleList() # the first conv self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)) # the first activation if act_type == 'relu': activation = nn.ReLU(inplace=True) elif act_type == 'prelu': activation = nn.PReLU(num_parameters=num_feat) elif act_type == 'leakyrelu': activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) self.body.append(activation) # the body structure for _ in range(num_conv): self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1)) # activation if act_type == 'relu': activation = nn.ReLU(inplace=True) elif act_type == 'prelu': activation = nn.PReLU(num_parameters=num_feat) elif act_type == 'leakyrelu': activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) self.body.append(activation) # the last conv self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1)) # upsample self.upsampler = nn.PixelShuffle(upscale) def forward(self, x): out = x for i in range(0, len(self.body)): out = self.body[i](out) out = self.upsampler(out) # add the nearest upsampled image, so that the network learns the residual base = F.interpolate(x, scale_factor=self.upscale, mode='nearest') out += base return out #################### # Upsampler #################### class Upsample(nn.Module): r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data. The input data is assumed to be of the form `minibatch x channels x [optional depth] x [optional height] x width`. """ def __init__(self, size=None, scale_factor=None, mode="nearest", align_corners=None): super(Upsample, self).__init__() if isinstance(scale_factor, tuple): self.scale_factor = tuple(float(factor) for factor in scale_factor) else: self.scale_factor = float(scale_factor) if scale_factor else None self.mode = mode self.size = size self.align_corners = align_corners def forward(self, x): return nn.functional.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners) def extra_repr(self): if self.scale_factor is not None: info = 'scale_factor=' + str(self.scale_factor) else: info = 'size=' + str(self.size) info += ', mode=' + self.mode return info def pixel_unshuffle(x, scale): """ Pixel unshuffle. Args: x (Tensor): Input feature with shape (b, c, hh, hw). scale (int): Downsample ratio. Returns: Tensor: the pixel unshuffled feature. """ b, c, hh, hw = x.size() out_channel = c * (scale**2) assert hh % scale == 0 and hw % scale == 0 h = hh // scale w = hw // scale x_view = x.view(b, c, h, scale, w, scale) return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w) def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, pad_type='zero', norm_type=None, act_type='relu', convtype='Conv2D'): """ Pixel shuffle layer (Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network, CVPR17) """ conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias, pad_type=pad_type, norm_type=None, act_type=None, convtype=convtype) pixel_shuffle = nn.PixelShuffle(upscale_factor) n = norm(norm_type, out_nc) if norm_type else None a = act(act_type) if act_type else None return sequential(conv, pixel_shuffle, n, a) def upconv_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, pad_type='zero', norm_type=None, act_type='relu', mode='nearest', convtype='Conv2D'): """ Upconv layer """ upscale_factor = (1, upscale_factor, upscale_factor) if convtype == 'Conv3D' else upscale_factor upsample = Upsample(scale_factor=upscale_factor, mode=mode) conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias, pad_type=pad_type, norm_type=norm_type, act_type=act_type, convtype=convtype) return sequential(upsample, conv) #################### # Basic blocks #################### def make_layer(basic_block, num_basic_block, **kwarg): """Make layers by stacking the same blocks. Args: basic_block (nn.module): nn.module class for basic block. (block) num_basic_block (int): number of blocks. (n_layers) Returns: nn.Sequential: Stacked blocks in nn.Sequential. """ layers = [] for _ in range(num_basic_block): layers.append(basic_block(**kwarg)) return nn.Sequential(*layers) def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1, beta=1.0): """ activation helper """ act_type = act_type.lower() if act_type == 'relu': layer = nn.ReLU(inplace) elif act_type in ('leakyrelu', 'lrelu'): layer = nn.LeakyReLU(neg_slope, inplace) elif act_type == 'prelu': layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope) elif act_type == 'tanh': # [-1, 1] range output layer = nn.Tanh() elif act_type == 'sigmoid': # [0, 1] range output layer = nn.Sigmoid() else: raise NotImplementedError('activation layer [{:s}] is not found'.format(act_type)) return layer class Identity(nn.Module): def __init__(self, *kwargs): super(Identity, self).__init__() def forward(self, x, *kwargs): return x def norm(norm_type, nc): """ Return a normalization layer """ norm_type = norm_type.lower() if norm_type == 'batch': layer = nn.BatchNorm2d(nc, affine=True) elif norm_type == 'instance': layer = nn.InstanceNorm2d(nc, affine=False) elif norm_type == 'none': def norm_layer(x): return Identity() else: raise NotImplementedError('normalization layer [{:s}] is not found'.format(norm_type)) return layer def pad(pad_type, padding): """ padding layer helper """ pad_type = pad_type.lower() if padding == 0: return None if pad_type == 'reflect': layer = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': layer = nn.ReplicationPad2d(padding) elif pad_type == 'zero': layer = nn.ZeroPad2d(padding) else: raise NotImplementedError('padding layer [{:s}] is not implemented'.format(pad_type)) return layer def get_valid_padding(kernel_size, dilation): kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1) padding = (kernel_size - 1) // 2 return padding class ShortcutBlock(nn.Module): """ Elementwise sum the output of a submodule to its input """ def __init__(self, submodule): super(ShortcutBlock, self).__init__() self.sub = submodule def forward(self, x): output = x + self.sub(x) return output def __repr__(self): return 'Identity + \n|' + self.sub.__repr__().replace('\n', '\n|') def sequential(*args): """ Flatten Sequential. It unwraps nn.Sequential. """ if len(args) == 1: if isinstance(args[0], OrderedDict): raise NotImplementedError('sequential does not support OrderedDict input.') return args[0] # No sequential is needed. modules = [] for module in args: if isinstance(module, nn.Sequential): for submodule in module.children(): modules.append(submodule) elif isinstance(module, nn.Module): modules.append(module) return nn.Sequential(*modules) def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True, pad_type='zero', norm_type=None, act_type='relu', mode='CNA', convtype='Conv2D', spectral_norm=False): """ Conv layer with padding, normalization, activation """ assert mode in ['CNA', 'NAC', 'CNAC'], 'Wrong conv mode [{:s}]'.format(mode) padding = get_valid_padding(kernel_size, dilation) p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None padding = padding if pad_type == 'zero' else 0 if convtype=='PartialConv2D': c = PartialConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, groups=groups) elif convtype=='DeformConv2D': c = DeformConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, groups=groups) elif convtype=='Conv3D': c = nn.Conv3d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, groups=groups) else: c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, groups=groups) if spectral_norm: c = nn.utils.spectral_norm(c) a = act(act_type) if act_type else None if 'CNA' in mode: n = norm(norm_type, out_nc) if norm_type else None return sequential(p, c, n, a) elif mode == 'NAC': if norm_type is None and act_type is not None: a = act(act_type, inplace=False) n = norm(norm_type, in_nc) if norm_type else None return sequential(n, a, p, c)