from einops import rearrange import gradio as gr import torch import torch.nn.functional as F from PIL import Image, ImageOps from transformers import AutoModel, CLIPImageProcessor hf_repo = "nvidia/RADIO-L" image_processor = CLIPImageProcessor.from_pretrained(hf_repo) model = AutoModel.from_pretrained(hf_repo, trust_remote_code=True) model.eval().cuda() title = """RADIO: Reduce All Domains Into One""" description = """ # RADIO AM-RADIO is a framework to distill Large Vision Foundation models into a single one. RADIO, a new vision foundation model, excels across visual domains, serving as a superior replacement for vision backbones. Integrating CLIP variants, DINOv2, and SAM through distillation, it preserves unique features like text grounding and segmentation correspondence. Outperforming teachers in ImageNet zero-shot (+6.8%), kNN (+2.39%), and linear probing segmentation (+3.8%) and vision-language models (LLaVa 1.5 up to 1.5%), it scales to any resolution, supports non-square images. # Instructions Simply paste an image or pick one from the gallery of examples and then click the "Submit" button. """ inputs = [ gr.Image(type="pil") ] examples = [ "IMG_0996.jpeg", "IMG_1061.jpeg", "IMG_1338.jpeg", "IMG_4319.jpeg", "IMG_5104.jpeg", "IMG_5139.jpeg", "IMG_6225.jpeg", "IMG_6814.jpeg", "IMG_7459.jpeg", "IMG_7577.jpeg", "IMG_7687.jpeg", "IMG_9862.jpeg", ] outputs = [ gr.Textbox(label="Feature Shape"), gr.Image(), ] def get_robust_pca(features: torch.Tensor, m: float = 2, remove_first_component=False): # features: (N, C) # m: a hyperparam controlling how many std dev outside for outliers assert len(features.shape) == 2, "features should be (N, C)" reduction_mat = torch.pca_lowrank(features, q=3, niter=20)[2] colors = features @ reduction_mat if remove_first_component: colors_min = colors.min(dim=0).values colors_max = colors.max(dim=0).values tmp_colors = (colors - colors_min) / (colors_max - colors_min) fg_mask = tmp_colors[..., 0] < 0.2 reduction_mat = torch.pca_lowrank(features[fg_mask], q=3, niter=20)[2] colors = features @ reduction_mat else: fg_mask = torch.ones_like(colors[:, 0]).bool() d = torch.abs(colors[fg_mask] - torch.median(colors[fg_mask], dim=0).values) mdev = torch.median(d, dim=0).values s = d / mdev try: rins = colors[fg_mask][s[:, 0] < m, 0] gins = colors[fg_mask][s[:, 1] < m, 1] bins = colors[fg_mask][s[:, 2] < m, 2] rgb_min = torch.tensor([rins.min(), gins.min(), bins.min()]) rgb_max = torch.tensor([rins.max(), gins.max(), bins.max()]) except: rins = colors gins = colors bins = colors rgb_min = torch.tensor([rins.min(), gins.min(), bins.min()]) rgb_max = torch.tensor([rins.max(), gins.max(), bins.max()]) return reduction_mat, rgb_min.to(reduction_mat), rgb_max.to(reduction_mat) def get_pca_map( feature_map: torch.Tensor, img_size, interpolation="bicubic", return_pca_stats=False, pca_stats=None, ): """ feature_map: (1, h, w, C) is the feature map of a single image. """ if feature_map.shape[0] != 1: # make it (1, h, w, C) feature_map = feature_map[None] if pca_stats is None: reduct_mat, color_min, color_max = get_robust_pca( feature_map.reshape(-1, feature_map.shape[-1]) ) else: reduct_mat, color_min, color_max = pca_stats pca_color = feature_map @ reduct_mat pca_color = (pca_color - color_min) / (color_max - color_min) pca_color = pca_color.clamp(0, 1) pca_color = F.interpolate( pca_color.permute(0, 3, 1, 2), size=img_size, mode=interpolation, ).permute(0, 2, 3, 1) pca_color = pca_color.cpu().numpy().squeeze(0) if return_pca_stats: return pca_color, (reduct_mat, color_min, color_max) return pca_color def pad_image_to_multiple_of_16(image): # Calculate the new dimensions to make them multiples of 16 width, height = image.size new_width = (width + 15) // 16 * 16 new_height = (height + 15) // 16 * 16 # Calculate the padding needed on each side pad_width = new_width - width pad_height = new_height - height left = pad_width // 2 right = pad_width - left top = pad_height // 2 bottom = pad_height - top # Apply the padding padded_image = ImageOps.expand(image, (left, top, right, bottom), fill='black') return padded_image @spaces.GPU def infer_radio(image): """Define the function to generate the output.""" image=pad_image_to_multiple_of_16(image) width, height = image.size pixel_values = image_processor(images=image, return_tensors='pt').pixel_values pixel_values = pixel_values.to(torch.bfloat16).cuda() _, features = model(pixel_values) num_rows = height // model.patch_size num_cols = width // model.patch_size features = features.detach() features = rearrange(features, 'b (h w) c -> b h w c', h=num_rows, w=num_cols).float() pca_viz = get_pca_map(features, (height, width), interpolation='bilinear') return f"{features.shape}", pca_viz # Create the Gradio interface demo = gr.Interface( fn=infer_radio, inputs=inputs, examples=examples, outputs=outputs, title=title, description=description ) if __name__ == "__main__": demo.launch()