Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import tempfile | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import AutoTokenizer, T5EncoderModel | |
| import diffusers | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDIMScheduler, | |
| PixArtSigmaPAGPipeline, | |
| PixArtSigmaPipeline, | |
| PixArtTransformer2DModel, | |
| ) | |
| from diffusers.utils import logging | |
| from diffusers.utils.testing_utils import ( | |
| CaptureLogger, | |
| enable_full_determinism, | |
| torch_device, | |
| ) | |
| from ..pipeline_params import ( | |
| TEXT_TO_IMAGE_BATCH_PARAMS, | |
| TEXT_TO_IMAGE_IMAGE_PARAMS, | |
| TEXT_TO_IMAGE_PARAMS, | |
| ) | |
| from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference, to_np | |
| enable_full_determinism() | |
| class PixArtSigmaPAGPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = PixArtSigmaPAGPipeline | |
| params = TEXT_TO_IMAGE_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) | |
| params = set(params) | |
| params.remove("cross_attention_kwargs") | |
| batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
| image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
| image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
| required_optional_params = PipelineTesterMixin.required_optional_params | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| transformer = PixArtTransformer2DModel( | |
| sample_size=8, | |
| num_layers=2, | |
| patch_size=2, | |
| attention_head_dim=8, | |
| num_attention_heads=3, | |
| caption_channels=32, | |
| in_channels=4, | |
| cross_attention_dim=24, | |
| out_channels=8, | |
| attention_bias=True, | |
| activation_fn="gelu-approximate", | |
| num_embeds_ada_norm=1000, | |
| norm_type="ada_norm_single", | |
| norm_elementwise_affine=False, | |
| norm_eps=1e-6, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL() | |
| scheduler = DDIMScheduler() | |
| text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| components = { | |
| "transformer": transformer.eval(), | |
| "vae": vae.eval(), | |
| "scheduler": scheduler, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 1.0, | |
| "pag_scale": 3.0, | |
| "use_resolution_binning": False, | |
| "output_type": "np", | |
| } | |
| return inputs | |
| def test_pag_disable_enable(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| # base pipeline (expect same output when pag is disabled) | |
| pipe = PixArtSigmaPipeline(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| del inputs["pag_scale"] | |
| assert "pag_scale" not in inspect.signature(pipe.__call__).parameters, ( | |
| f"`pag_scale` should not be a call parameter of the base pipeline {pipe.__class__.__name__}." | |
| ) | |
| out = pipe(**inputs).images[0, -3:, -3:, -1] | |
| # pag disabled with pag_scale=0.0 | |
| components["pag_applied_layers"] = ["blocks.1"] | |
| pipe_pag = self.pipeline_class(**components) | |
| pipe_pag = pipe_pag.to(device) | |
| pipe_pag.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| inputs["pag_scale"] = 0.0 | |
| out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] | |
| # pag enabled | |
| pipe_pag = self.pipeline_class(**components) | |
| pipe_pag = pipe_pag.to(device) | |
| pipe_pag.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] | |
| assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 | |
| assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3 | |
| def test_pag_applied_layers(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| # base pipeline | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| # "attn1" should apply to all self-attention layers. | |
| all_self_attn_layers = [k for k in pipe.transformer.attn_processors.keys() if "attn1" in k] | |
| pag_layers = ["blocks.0", "blocks.1"] | |
| pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
| assert set(pipe.pag_attn_processors) == set(all_self_attn_layers) | |
| def test_pag_inference(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| pipe_pag = self.pipeline_class(**components) | |
| pipe_pag = pipe_pag.to(device) | |
| pipe_pag.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe_pag(**inputs).images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == ( | |
| 1, | |
| 8, | |
| 8, | |
| 3, | |
| ), f"the shape of the output image should be (1, 8, 8, 3) but got {image.shape}" | |
| expected_slice = np.array([0.6499, 0.3250, 0.3572, 0.6780, 0.4453, 0.4582, 0.2770, 0.5168, 0.4594]) | |
| max_diff = np.abs(image_slice.flatten() - expected_slice).max() | |
| self.assertLessEqual(max_diff, 1e-3) | |
| # Because the PAG PixArt Sigma has `pag_applied_layers`. | |
| # Also, we shouldn't be doing `set_default_attn_processor()` after loading | |
| # the pipeline with `pag_applied_layers`. | |
| def test_save_load_local(self, expected_max_difference=1e-4): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output = pipe(**inputs)[0] | |
| logger = logging.get_logger("diffusers.pipelines.pipeline_utils") | |
| logger.setLevel(diffusers.logging.INFO) | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| pipe.save_pretrained(tmpdir, safe_serialization=False) | |
| with CaptureLogger(logger) as cap_logger: | |
| pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, pag_applied_layers=["blocks.1"]) | |
| for name in pipe_loaded.components.keys(): | |
| if name not in pipe_loaded._optional_components: | |
| assert name in str(cap_logger) | |
| pipe_loaded.to(torch_device) | |
| pipe_loaded.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_loaded = pipe_loaded(**inputs)[0] | |
| max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() | |
| self.assertLess(max_diff, expected_max_difference) | |
| # We shouldn't be setting `set_default_attn_processor` here. | |
| def test_attention_slicing_forward_pass( | |
| self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 | |
| ): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator_device = "cpu" | |
| inputs = self.get_dummy_inputs(generator_device) | |
| output_without_slicing = pipe(**inputs)[0] | |
| pipe.enable_attention_slicing(slice_size=1) | |
| inputs = self.get_dummy_inputs(generator_device) | |
| output_with_slicing1 = pipe(**inputs)[0] | |
| pipe.enable_attention_slicing(slice_size=2) | |
| inputs = self.get_dummy_inputs(generator_device) | |
| output_with_slicing2 = pipe(**inputs)[0] | |
| if test_max_difference: | |
| max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() | |
| max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() | |
| self.assertLess( | |
| max(max_diff1, max_diff2), | |
| expected_max_diff, | |
| "Attention slicing should not affect the inference results", | |
| ) | |
| if test_mean_pixel_difference: | |
| assert_mean_pixel_difference(to_np(output_with_slicing1[0]), to_np(output_without_slicing[0])) | |
| assert_mean_pixel_difference(to_np(output_with_slicing2[0]), to_np(output_without_slicing[0])) | |
| # Because we have `pag_applied_layers` we cannot directly apply | |
| # `set_default_attn_processor` | |
| def test_dict_tuple_outputs_equivalent(self, expected_slice=None, expected_max_difference=1e-4): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator_device = "cpu" | |
| if expected_slice is None: | |
| output = pipe(**self.get_dummy_inputs(generator_device))[0] | |
| else: | |
| output = expected_slice | |
| output_tuple = pipe(**self.get_dummy_inputs(generator_device), return_dict=False)[0] | |
| if expected_slice is None: | |
| max_diff = np.abs(to_np(output) - to_np(output_tuple)).max() | |
| else: | |
| if output_tuple.ndim != 5: | |
| max_diff = np.abs(to_np(output) - to_np(output_tuple)[0, -3:, -3:, -1].flatten()).max() | |
| else: | |
| max_diff = np.abs(to_np(output) - to_np(output_tuple)[0, -3:, -3:, -1, -1].flatten()).max() | |
| self.assertLess(max_diff, expected_max_difference) | |
| # Same reason as above | |
| def test_inference_batch_single_identical( | |
| self, | |
| batch_size=2, | |
| expected_max_diff=1e-4, | |
| additional_params_copy_to_batched_inputs=["num_inference_steps"], | |
| ): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| # Reset generator in case it is has been used in self.get_dummy_inputs | |
| inputs["generator"] = self.get_generator(0) | |
| logger = logging.get_logger(pipe.__module__) | |
| logger.setLevel(level=diffusers.logging.FATAL) | |
| # batchify inputs | |
| batched_inputs = {} | |
| batched_inputs.update(inputs) | |
| for name in self.batch_params: | |
| if name not in inputs: | |
| continue | |
| value = inputs[name] | |
| if name == "prompt": | |
| len_prompt = len(value) | |
| batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] | |
| batched_inputs[name][-1] = 100 * "very long" | |
| else: | |
| batched_inputs[name] = batch_size * [value] | |
| if "generator" in inputs: | |
| batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)] | |
| if "batch_size" in inputs: | |
| batched_inputs["batch_size"] = batch_size | |
| for arg in additional_params_copy_to_batched_inputs: | |
| batched_inputs[arg] = inputs[arg] | |
| output = pipe(**inputs) | |
| output_batch = pipe(**batched_inputs) | |
| assert output_batch[0].shape[0] == batch_size | |
| max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max() | |
| assert max_diff < expected_max_diff | |
| # Because we're passing `pag_applied_layers` (type of List) in the components as well. | |
| def test_components_function(self): | |
| init_components = self.get_dummy_components() | |
| init_components = {k: v for k, v in init_components.items() if not isinstance(v, (str, int, float, list))} | |
| pipe = self.pipeline_class(**init_components) | |
| self.assertTrue(hasattr(pipe, "components")) | |
| self.assertTrue(set(pipe.components.keys()) == set(init_components.keys())) | |
| def test_save_load_optional_components(self): | |
| pass | |