eli5 response quality revamp
Browse files
components/handlers/whatsapp_handlers.py
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
# handlers/whatsapp_handlers.py
|
| 2 |
import logging
|
|
|
|
| 3 |
import re
|
| 4 |
from typing import Optional, Dict
|
| 5 |
|
| 6 |
from fastapi.responses import JSONResponse
|
| 7 |
|
| 8 |
from components.gateways.headlines_to_wa import fetch_cached_headlines, send_to_whatsapp
|
| 9 |
-
from components.indexers.news_indexer import load_news_index # should return a LlamaIndex VectorStoreIndex
|
| 10 |
from components.LLMs.Mistral import MistralTogetherClient, build_messages
|
| 11 |
|
| 12 |
# ------------------------------------------------------------
|
|
@@ -98,7 +98,7 @@ def handle_small_talk(from_number: str) -> JSONResponse:
|
|
| 98 |
|
| 99 |
|
| 100 |
# ------------------------------------------------------------
|
| 101 |
-
# Chat Question → “Explain by number” flow
|
| 102 |
# ------------------------------------------------------------
|
| 103 |
|
| 104 |
_HEADLINE_LINE_RE = re.compile(r"^\s*(\d+)\.\s+(.*)$")
|
|
@@ -142,18 +142,28 @@ def _parse_rendered_digest(rendered: str) -> Dict[int, str]:
|
|
| 142 |
return mapping
|
| 143 |
|
| 144 |
|
| 145 |
-
def _retrieve_context_for_headline(headline_text: str, top_k: int =
|
| 146 |
"""
|
| 147 |
Use the vector index to pull contextual passages related to the headline.
|
| 148 |
-
|
|
|
|
| 149 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
try:
|
| 151 |
index = load_news_index()
|
| 152 |
try:
|
|
|
|
| 153 |
qe = index.as_query_engine(similarity_top_k=top_k)
|
| 154 |
except Exception:
|
| 155 |
-
# Older
|
| 156 |
-
from llama_index.core.query_engine import RetrievalQueryEngine
|
| 157 |
qe = RetrievalQueryEngine(index=index, similarity_top_k=top_k)
|
| 158 |
|
| 159 |
query = (
|
|
@@ -164,33 +174,99 @@ def _retrieve_context_for_headline(headline_text: str, top_k: int = 5) -> str:
|
|
| 164 |
resp = qe.query(query)
|
| 165 |
return str(resp)
|
| 166 |
except Exception as e:
|
| 167 |
-
|
|
|
|
|
|
|
| 168 |
return ""
|
| 169 |
|
| 170 |
|
| 171 |
-
def
|
| 172 |
"""
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
"""
|
| 175 |
sys_prompt = (
|
| 176 |
-
"You are a concise explainer for a news assistant. "
|
| 177 |
-
"
|
| 178 |
-
"
|
| 179 |
-
|
| 180 |
-
user_prompt = (
|
| 181 |
-
f"QUESTION:\n{question}\n\n"
|
| 182 |
-
f"CONTEXT (may be partial):\n{context}\n\n"
|
| 183 |
-
"Now give a short ELI5 explanation. Avoid jargon. If numbers matter, include them."
|
| 184 |
)
|
| 185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
try:
|
| 187 |
llm = MistralTogetherClient()
|
| 188 |
msgs = build_messages(user_prompt, sys_prompt)
|
| 189 |
-
out, _usage = llm.chat(msgs, temperature=0.2, max_tokens=
|
| 190 |
return out.strip()
|
| 191 |
except Exception as e:
|
| 192 |
-
logging.exception(f"Mistral ELI5 generation failed: {e}")
|
| 193 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
|
| 196 |
def handle_chat_question(from_number: str, message_text: str) -> JSONResponse:
|
|
@@ -199,8 +275,8 @@ def handle_chat_question(from_number: str, message_text: str) -> JSONResponse:
|
|
| 199 |
- If the user references a headline number (“explain 14 like I’m 5”),
|
| 200 |
1) Parse the number
|
| 201 |
2) Look up that numbered line from the rendered digest
|
| 202 |
-
3) Retrieve vector context
|
| 203 |
-
4) Generate
|
| 204 |
- Otherwise, provide a gentle hint (for now).
|
| 205 |
"""
|
| 206 |
logging.info(f"Chat question from {from_number}: {message_text}")
|
|
@@ -221,12 +297,12 @@ def handle_chat_question(from_number: str, message_text: str) -> JSONResponse:
|
|
| 221 |
)
|
| 222 |
return JSONResponse(status_code=200, content={"status": "success", "message": "Number not found"})
|
| 223 |
|
| 224 |
-
# 3) Retrieve context from the vector index using the headline line
|
| 225 |
-
ctx = _retrieve_context_for_headline(target_line, top_k=
|
| 226 |
|
| 227 |
-
# 4) Generate ELI5 answer
|
| 228 |
question = f"Explain headline #{number}: {target_line}"
|
| 229 |
-
answer =
|
| 230 |
|
| 231 |
# 5) Send back
|
| 232 |
_safe_send(answer, to=from_number)
|
|
|
|
| 1 |
# handlers/whatsapp_handlers.py
|
| 2 |
import logging
|
| 3 |
+
import os
|
| 4 |
import re
|
| 5 |
from typing import Optional, Dict
|
| 6 |
|
| 7 |
from fastapi.responses import JSONResponse
|
| 8 |
|
| 9 |
from components.gateways.headlines_to_wa import fetch_cached_headlines, send_to_whatsapp
|
|
|
|
| 10 |
from components.LLMs.Mistral import MistralTogetherClient, build_messages
|
| 11 |
|
| 12 |
# ------------------------------------------------------------
|
|
|
|
| 98 |
|
| 99 |
|
| 100 |
# ------------------------------------------------------------
|
| 101 |
+
# Chat Question → “Explain by number” flow (structured + quality-guarded)
|
| 102 |
# ------------------------------------------------------------
|
| 103 |
|
| 104 |
_HEADLINE_LINE_RE = re.compile(r"^\s*(\d+)\.\s+(.*)$")
|
|
|
|
| 142 |
return mapping
|
| 143 |
|
| 144 |
|
| 145 |
+
def _retrieve_context_for_headline(headline_text: str, top_k: int = 15) -> str:
|
| 146 |
"""
|
| 147 |
Use the vector index to pull contextual passages related to the headline.
|
| 148 |
+
- Uses a higher top_k to widen coverage (quality over speed).
|
| 149 |
+
- Gracefully degrades if index is unavailable or not yet built.
|
| 150 |
"""
|
| 151 |
+
# Defer the import so a missing/invalid index module won't break imports
|
| 152 |
+
try:
|
| 153 |
+
from components.indexers.news_indexer import load_news_index # type: ignore
|
| 154 |
+
except Exception as e:
|
| 155 |
+
logging.warning(f"Index module not available yet: {e}")
|
| 156 |
+
return ""
|
| 157 |
+
|
| 158 |
+
# Try to load the index; if persist_dir is wrong/missing, swallow and return ""
|
| 159 |
try:
|
| 160 |
index = load_news_index()
|
| 161 |
try:
|
| 162 |
+
# LlamaIndex v0.10+
|
| 163 |
qe = index.as_query_engine(similarity_top_k=top_k)
|
| 164 |
except Exception:
|
| 165 |
+
# Older API fallback
|
| 166 |
+
from llama_index.core.query_engine import RetrievalQueryEngine # type: ignore
|
| 167 |
qe = RetrievalQueryEngine(index=index, similarity_top_k=top_k)
|
| 168 |
|
| 169 |
query = (
|
|
|
|
| 174 |
resp = qe.query(query)
|
| 175 |
return str(resp)
|
| 176 |
except Exception as e:
|
| 177 |
+
# Avoid noisy tracebacks in normal operation; index may simply not exist yet
|
| 178 |
+
persist_dir = os.getenv("NEWS_INDEX_PERSIST_DIR") or os.getenv("PERSIST_DIR") or "<unset>"
|
| 179 |
+
logging.warning(f"Vector retrieval skipped (no index at {persist_dir}): {e}")
|
| 180 |
return ""
|
| 181 |
|
| 182 |
|
| 183 |
+
def _eli5_answer_structured(question: str, context: str, headline_only: Optional[str] = None) -> str:
|
| 184 |
"""
|
| 185 |
+
Generate a structured, quality-guarded ELI5 answer.
|
| 186 |
+
Format:
|
| 187 |
+
Headline #N — <short title>
|
| 188 |
+
Key points:
|
| 189 |
+
• ...
|
| 190 |
+
• ...
|
| 191 |
+
Numbers & facts:
|
| 192 |
+
• ...
|
| 193 |
+
Why it matters:
|
| 194 |
+
• ...
|
| 195 |
+
Caveats:
|
| 196 |
+
• ...
|
| 197 |
+
Confidence: High/Medium/Low
|
| 198 |
+
|
| 199 |
+
Rules:
|
| 200 |
+
- 120–180 words total.
|
| 201 |
+
- Use ONLY the provided context/headline; if missing, write “Not in context”.
|
| 202 |
+
- No speculation; keep neutral tone; be brief.
|
| 203 |
"""
|
| 204 |
sys_prompt = (
|
| 205 |
+
"You are a rigorous, concise explainer for a news assistant. "
|
| 206 |
+
"Produce clear, structured outputs with bullet points. "
|
| 207 |
+
"If any detail is not present in context, write 'Not in context'. "
|
| 208 |
+
"Avoid flowery language; be factual and neutral."
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
)
|
| 210 |
|
| 211 |
+
if context.strip():
|
| 212 |
+
user_prompt = (
|
| 213 |
+
f"QUESTION:\n{question}\n\n"
|
| 214 |
+
f"CONTEXT (may be partial, use ONLY this):\n{context}\n\n"
|
| 215 |
+
"Write 120–180 words in this exact structure:\n"
|
| 216 |
+
"Headline:\n"
|
| 217 |
+
"Key points:\n"
|
| 218 |
+
"• ...\n• ...\n• ...\n"
|
| 219 |
+
"Numbers & facts:\n"
|
| 220 |
+
"• ...\n• ...\n"
|
| 221 |
+
"Why it matters:\n"
|
| 222 |
+
"• ...\n"
|
| 223 |
+
"Caveats:\n"
|
| 224 |
+
"• ...\n"
|
| 225 |
+
"Confidence: High | Medium | Low\n"
|
| 226 |
+
"Rules:\n"
|
| 227 |
+
"- If you can't find a detail in CONTEXT, write 'Not in context'.\n"
|
| 228 |
+
"- Do NOT add sources or links unless they appear in CONTEXT.\n"
|
| 229 |
+
"- Keep it short, precise, and neutral.\n"
|
| 230 |
+
)
|
| 231 |
+
else:
|
| 232 |
+
# fallback: rely on the headline only
|
| 233 |
+
headline_text = headline_only or question
|
| 234 |
+
user_prompt = (
|
| 235 |
+
"CONTEXT is empty. You must base the answer ONLY on the HEADLINE below; "
|
| 236 |
+
"write 'Not in context' for any missing specifics.\n\n"
|
| 237 |
+
f"HEADLINE:\n{headline_text}\n\n"
|
| 238 |
+
"Write 90–140 words in this exact structure:\n"
|
| 239 |
+
"Headline:\n"
|
| 240 |
+
"Key points:\n"
|
| 241 |
+
"• ...\n• ...\n"
|
| 242 |
+
"Numbers & facts:\n"
|
| 243 |
+
"• Not in context\n"
|
| 244 |
+
"Why it matters:\n"
|
| 245 |
+
"• ...\n"
|
| 246 |
+
"Caveats:\n"
|
| 247 |
+
"• Limited details available\n"
|
| 248 |
+
"Confidence: Low\n"
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
try:
|
| 252 |
llm = MistralTogetherClient()
|
| 253 |
msgs = build_messages(user_prompt, sys_prompt)
|
| 254 |
+
out, _usage = llm.chat(msgs, temperature=0.2, max_tokens=400)
|
| 255 |
return out.strip()
|
| 256 |
except Exception as e:
|
| 257 |
+
logging.exception(f"Mistral structured ELI5 generation failed: {e}")
|
| 258 |
+
return (
|
| 259 |
+
"Headline:\n"
|
| 260 |
+
"Key points:\n"
|
| 261 |
+
"• I couldn’t generate an explanation right now.\n"
|
| 262 |
+
"Numbers & facts:\n"
|
| 263 |
+
"• Not in context\n"
|
| 264 |
+
"Why it matters:\n"
|
| 265 |
+
"• Not in context\n"
|
| 266 |
+
"Caveats:\n"
|
| 267 |
+
"• System error\n"
|
| 268 |
+
"Confidence: Low"
|
| 269 |
+
)
|
| 270 |
|
| 271 |
|
| 272 |
def handle_chat_question(from_number: str, message_text: str) -> JSONResponse:
|
|
|
|
| 275 |
- If the user references a headline number (“explain 14 like I’m 5”),
|
| 276 |
1) Parse the number
|
| 277 |
2) Look up that numbered line from the rendered digest
|
| 278 |
+
3) Retrieve vector context (top_k widened for coverage)
|
| 279 |
+
4) Generate a STRUCTURED ELI5 answer (with quality guardrails)
|
| 280 |
- Otherwise, provide a gentle hint (for now).
|
| 281 |
"""
|
| 282 |
logging.info(f"Chat question from {from_number}: {message_text}")
|
|
|
|
| 297 |
)
|
| 298 |
return JSONResponse(status_code=200, content={"status": "success", "message": "Number not found"})
|
| 299 |
|
| 300 |
+
# 3) Retrieve broader context from the vector index using the headline line
|
| 301 |
+
ctx = _retrieve_context_for_headline(target_line, top_k=15)
|
| 302 |
|
| 303 |
+
# 4) Generate STRUCTURED ELI5 answer (works even if ctx == "")
|
| 304 |
question = f"Explain headline #{number}: {target_line}"
|
| 305 |
+
answer = _eli5_answer_structured(question, ctx, headline_only=target_line)
|
| 306 |
|
| 307 |
# 5) Send back
|
| 308 |
_safe_send(answer, to=from_number)
|