import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer import spaces device = "cuda" if torch.cuda.is_available() else "cpu" model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen2-0.5B-Instruct", torch_dtype="auto", device_map="auto" ).to(device) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct") @spaces.GPU def chatbot(user_input, history): system_message = {"role": "system", "content": "You are a helpful assistant."} messages = history + [{"role": "user", "content": user_input}] if len(history) == 0: messages.insert(0, system_message) text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) attention_mask = torch.ones(model_inputs.input_ids.shape, device=device) generated_ids = model.generate( model_inputs.input_ids, attention_mask=attention_mask, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] history.append({"role": "user", "content": user_input}) history.append({"role": "assistant", "content": response}) gradio_history = [[msg["role"], msg["content"]] for msg in history] return gradio_history, history with gr.Blocks() as demo: chatbot_interface = gr.Chatbot() state = gr.State([]) with gr.Row(): txt = gr.Textbox(show_label=False, placeholder="Ask anything") txt.submit(chatbot, [txt, state], [chatbot_interface, state]) demo.launch()