import torch import re import gradio as gr import streamlit as st # st.title("Image Caption Generator") from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel import os import tensorflow as tf os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' device='cpu' encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) def predict(image, max_length=64, num_beams=4): image = image.convert('RGB') image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] caption_ids = model.generate(image, max_length = max_length)[0] caption_text = clean_text(tokenizer.decode(caption_ids)) return caption_text input = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True) output = gr.outputs.Textbox(type="text",label="Captions") examples = ["example1.jpg"] print("------------------------- 6 -------------------------\n") title = "Image to Text ViT with LORA" # interface = gr.Interface( # fn=predict, # description=description, # inputs = input, # theme="grass", # outputs=output, # examples=examples, # title=title, # ) # interface.launch(debug=True) with gr.Blocks() as demo: gr.HTML( """