""" WaveGRU model: melspectrogram => mu-law encoded waveform """ from typing import Tuple import jax import jax.numpy as jnp import pax from pax import GRUState from tqdm.cli import tqdm class ReLU(pax.Module): def __call__(self, x): return jax.nn.relu(x) def dilated_residual_conv_block(dim, kernel, stride, dilation): """ Use dilated convs to enlarge the receptive field """ return pax.Sequential( pax.Conv1D(dim, dim, kernel, stride, dilation, "VALID", with_bias=False), pax.LayerNorm(dim, -1, True, True), ReLU(), pax.Conv1D(dim, dim, 1, 1, 1, "VALID", with_bias=False), pax.LayerNorm(dim, -1, True, True), ReLU(), ) def tile_1d(x, factor): """ Tile tensor of shape N, L, D into N, L*factor, D """ N, L, D = x.shape x = x[:, :, None, :] x = jnp.tile(x, (1, 1, factor, 1)) x = jnp.reshape(x, (N, L * factor, D)) return x def up_block(in_dim, out_dim, factor, relu=True): """ Tile >> Conv >> BatchNorm >> ReLU """ f = pax.Sequential( lambda x: tile_1d(x, factor), pax.Conv1D( in_dim, out_dim, 2 * factor, stride=1, padding="VALID", with_bias=False ), pax.LayerNorm(out_dim, -1, True, True), ) if relu: f >>= ReLU() return f class Upsample(pax.Module): """ Upsample melspectrogram to match raw audio sample rate. """ def __init__( self, input_dim, hidden_dim, rnn_dim, upsample_factors, has_linear_output=False ): super().__init__() self.input_conv = pax.Sequential( pax.Conv1D(input_dim, hidden_dim, 1, with_bias=False), pax.LayerNorm(hidden_dim, -1, True, True), ) self.upsample_factors = upsample_factors self.dilated_convs = [ dilated_residual_conv_block(hidden_dim, 3, 1, 2**i) for i in range(5) ] self.up_factors = upsample_factors[:-1] self.up_blocks = [ up_block(hidden_dim, hidden_dim, x) for x in self.up_factors[:-1] ] self.up_blocks.append( up_block( hidden_dim, hidden_dim if has_linear_output else 3 * rnn_dim, self.up_factors[-1], relu=False, ) ) if has_linear_output: self.x2zrh_fc = pax.Linear(hidden_dim, rnn_dim * 3) self.has_linear_output = has_linear_output self.final_tile = upsample_factors[-1] def __call__(self, x, no_repeat=False): x = self.input_conv(x) for residual in self.dilated_convs: y = residual(x) pad = (x.shape[1] - y.shape[1]) // 2 x = x[:, pad:-pad, :] + y for f in self.up_blocks: x = f(x) if self.has_linear_output: x = self.x2zrh_fc(x) if no_repeat: return x x = tile_1d(x, self.final_tile) return x class GRU(pax.Module): """ A customized GRU module. """ input_dim: int hidden_dim: int def __init__(self, hidden_dim: int): super().__init__() self.hidden_dim = hidden_dim self.h_zrh_fc = pax.Linear( hidden_dim, hidden_dim * 3, w_init=jax.nn.initializers.variance_scaling( 1, "fan_out", "truncated_normal" ), ) def initial_state(self, batch_size: int) -> GRUState: """Create an all zeros initial state.""" return GRUState(jnp.zeros((batch_size, self.hidden_dim), dtype=jnp.float32)) def __call__(self, state: GRUState, x) -> Tuple[GRUState, jnp.ndarray]: hidden = state.hidden x_zrh = x h_zrh = self.h_zrh_fc(hidden) x_zr, x_h = jnp.split(x_zrh, [2 * self.hidden_dim], axis=-1) h_zr, h_h = jnp.split(h_zrh, [2 * self.hidden_dim], axis=-1) zr = x_zr + h_zr zr = jax.nn.sigmoid(zr) z, r = jnp.split(zr, 2, axis=-1) h_hat = x_h + r * h_h h_hat = jnp.tanh(h_hat) h = (1 - z) * hidden + z * h_hat return GRUState(h), h class Pruner(pax.Module): """ Base class for pruners """ def compute_sparsity(self, step): t = jnp.power(1 - (step * 1.0 - 1_000) / 200_000, 3) z = 0.95 * jnp.clip(1.0 - t, a_min=0, a_max=1) return z def prune(self, step, weights): """ Return a mask """ z = self.compute_sparsity(step) x = weights H, W = x.shape x = x.reshape(H // 4, 4, W // 4, 4) x = jnp.abs(x) x = jnp.sum(x, axis=(1, 3), keepdims=True) q = jnp.quantile(jnp.reshape(x, (-1,)), z) x = x >= q x = jnp.tile(x, (1, 4, 1, 4)) x = jnp.reshape(x, (H, W)) return x class GRUPruner(Pruner): def __init__(self, gru): super().__init__() self.h_zrh_fc_mask = jnp.ones_like(gru.h_zrh_fc.weight) == 1 def __call__(self, gru: pax.GRU): """ Apply mask after an optimization step """ zrh_masked_weights = jnp.where(self.h_zrh_fc_mask, gru.h_zrh_fc.weight, 0) gru = gru.replace_node(gru.h_zrh_fc.weight, zrh_masked_weights) return gru def update_mask(self, step, gru: pax.GRU): """ Update internal masks """ z_weight, r_weight, h_weight = jnp.split(gru.h_zrh_fc.weight, 3, axis=1) z_mask = self.prune(step, z_weight) r_mask = self.prune(step, r_weight) h_mask = self.prune(step, h_weight) self.h_zrh_fc_mask *= jnp.concatenate((z_mask, r_mask, h_mask), axis=1) class LinearPruner(Pruner): def __init__(self, linear): super().__init__() self.mask = jnp.ones_like(linear.weight) == 1 def __call__(self, linear: pax.Linear): """ Apply mask after an optimization step """ return linear.replace(weight=jnp.where(self.mask, linear.weight, 0)) def update_mask(self, step, linear: pax.Linear): """ Update internal masks """ self.mask *= self.prune(step, linear.weight) class WaveGRU(pax.Module): """ WaveGRU vocoder model. """ def __init__( self, mel_dim=80, rnn_dim=1024, upsample_factors=(5, 3, 20), has_linear_output=False, ): super().__init__() self.embed = pax.Embed(256, 3 * rnn_dim) self.upsample = Upsample( input_dim=mel_dim, hidden_dim=512, rnn_dim=rnn_dim, upsample_factors=upsample_factors, has_linear_output=has_linear_output, ) self.rnn = GRU(rnn_dim) self.o1 = pax.Linear(rnn_dim, rnn_dim) self.o2 = pax.Linear(rnn_dim, 256) self.gru_pruner = GRUPruner(self.rnn) self.o1_pruner = LinearPruner(self.o1) self.o2_pruner = LinearPruner(self.o2) def output(self, x): x = self.o1(x) x = jax.nn.relu(x) x = self.o2(x) return x def inference(self, mel, no_gru=False, seed=42): """ generate waveform form melspectrogram """ @jax.jit def step(rnn_state, mel, rng_key, x): x = self.embed(x) x = x + mel rnn_state, x = self.rnn(rnn_state, x) x = self.output(x) rng_key, next_rng_key = jax.random.split(rng_key, 2) x = jax.random.categorical(rng_key, x, axis=-1) return rnn_state, next_rng_key, x y = self.upsample(mel, no_repeat=no_gru) if no_gru: return y x = jnp.array([127], dtype=jnp.int32) rnn_state = self.rnn.initial_state(1) output = [] rng_key = jax.random.PRNGKey(seed) for i in tqdm(range(y.shape[1])): rnn_state, rng_key, x = step(rnn_state, y[:, i], rng_key, x) output.append(x) x = jnp.concatenate(output, axis=0) return x def __call__(self, mel, x): x = self.embed(x) y = self.upsample(mel) pad_left = (x.shape[1] - y.shape[1]) // 2 pad_right = x.shape[1] - y.shape[1] - pad_left x = x[:, pad_left:-pad_right] x = x + y _, x = pax.scan( self.rnn, self.rnn.initial_state(x.shape[0]), x, time_major=False, ) x = self.output(x) return x