Spaces:
Build error
Build error
Commit
·
8014fee
1
Parent(s):
a50857e
Added cli standalone
Browse files- README.md +5 -0
- app.py +8 -35
- entity_extraction.py +43 -0
README.md
CHANGED
|
@@ -10,3 +10,8 @@ pinned: false
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
## Quickstart
|
| 16 |
+
|
| 17 |
+
For a simple GUI, run `streamlit run app.py`. For CLI usage, run `entity_extraction.py`.
|
app.py
CHANGED
|
@@ -1,49 +1,23 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import streamlit.components.v1 as components
|
| 3 |
import requests
|
| 4 |
-
import spacy
|
| 5 |
import hashlib
|
| 6 |
-
|
| 7 |
-
nlp = spacy.load("en_core_web_md")
|
| 8 |
-
|
| 9 |
-
# add pipeline (declared through entry_points in setup.py)
|
| 10 |
-
nlp.add_pipe("entityfishing")
|
| 11 |
-
|
| 12 |
|
| 13 |
st.title('Entity Linking Demo')
|
|
|
|
|
|
|
| 14 |
|
|
|
|
| 15 |
|
| 16 |
article = st.text_area('Article to analyze:', value=open("example.txt").read())
|
| 17 |
|
| 18 |
-
seen_entities = []
|
| 19 |
-
seen_surnames = []
|
| 20 |
-
seen_qids = []
|
| 21 |
if st.button('Submit'):
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
with st.spinner(text="Analysing..."):
|
| 25 |
-
doc = nlp(article)
|
| 26 |
-
for ent in doc.ents:
|
| 27 |
-
if ent._.kb_qid is None or ent.label_ not in ["ORG", "PERSON", "GPE"] or ent.text in seen_entities:
|
| 28 |
-
continue
|
| 29 |
-
if ent._.nerd_score < 0.5:
|
| 30 |
-
continue
|
| 31 |
-
|
| 32 |
-
if len(ent.text.split()) == 1:
|
| 33 |
-
# Single name
|
| 34 |
-
if ent.text in seen_surnames:
|
| 35 |
-
continue
|
| 36 |
-
elif ent.label_ == "PERSON":
|
| 37 |
-
# Multipart name
|
| 38 |
-
seen_surnames.append(ent.text.split()[-1])
|
| 39 |
-
|
| 40 |
-
seen_entities.append(ent.text)
|
| 41 |
-
print((ent.text, ent.label_, ent._.kb_qid, ent._.url_wikidata, ent._.nerd_score))
|
| 42 |
-
|
| 43 |
-
if ent._.kb_qid in seen_qids:
|
| 44 |
-
continue
|
| 45 |
-
seen_qids.append(ent._.kb_qid)
|
| 46 |
|
|
|
|
|
|
|
| 47 |
r = requests.get("https://www.wikidata.org/w/api.php?action=wbgetclaims&format=json&property=P18&entity=" + ent._.kb_qid)
|
| 48 |
data = r.json()["claims"]
|
| 49 |
if "P18" in data.keys():
|
|
@@ -56,7 +30,6 @@ if st.button('Submit'):
|
|
| 56 |
good_ents.append((ent.text, ent.label_, ent._.kb_qid, ent._.url_wikidata, ent._.nerd_score, url))
|
| 57 |
cols = st.columns(len(good_ents))
|
| 58 |
for i, ent in enumerate(good_ents):
|
| 59 |
-
# st.image(url)
|
| 60 |
with cols[i]:
|
| 61 |
components.html(f"<image style='border-radius: 50%;object-fit:cover;width:100px;height:100px' src='{ent[-1]}'/>", height=110, width=110)
|
| 62 |
st.caption(ent[0])
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import streamlit.components.v1 as components
|
| 3 |
import requests
|
|
|
|
| 4 |
import hashlib
|
| 5 |
+
from entity_extraction import extract_entities
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
st.title('Entity Linking Demo')
|
| 8 |
+
st.markdown("""Linking named entities in an article to
|
| 9 |
+
wikidata entries (allowing us to pull the images).
|
| 10 |
|
| 11 |
+
*Note: Only trained on entities before May 2020*""")
|
| 12 |
|
| 13 |
article = st.text_area('Article to analyze:', value=open("example.txt").read())
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
if st.button('Submit'):
|
| 16 |
+
with st.spinner(text="Extracting..."):
|
| 17 |
+
good_ents = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
ents = extract_entities(article)
|
| 20 |
+
for i, ent in enumerate(ents):
|
| 21 |
r = requests.get("https://www.wikidata.org/w/api.php?action=wbgetclaims&format=json&property=P18&entity=" + ent._.kb_qid)
|
| 22 |
data = r.json()["claims"]
|
| 23 |
if "P18" in data.keys():
|
|
|
|
| 30 |
good_ents.append((ent.text, ent.label_, ent._.kb_qid, ent._.url_wikidata, ent._.nerd_score, url))
|
| 31 |
cols = st.columns(len(good_ents))
|
| 32 |
for i, ent in enumerate(good_ents):
|
|
|
|
| 33 |
with cols[i]:
|
| 34 |
components.html(f"<image style='border-radius: 50%;object-fit:cover;width:100px;height:100px' src='{ent[-1]}'/>", height=110, width=110)
|
| 35 |
st.caption(ent[0])
|
entity_extraction.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spacy
|
| 2 |
+
|
| 3 |
+
nlp = spacy.load("en_core_web_md")
|
| 4 |
+
nlp.add_pipe("entityfishing")
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def extract_entities(article):
|
| 8 |
+
'''Find wikidata refs for article entities'''
|
| 9 |
+
ents = []
|
| 10 |
+
seen_entities = []
|
| 11 |
+
seen_surnames = []
|
| 12 |
+
seen_qids = []
|
| 13 |
+
|
| 14 |
+
doc = nlp(article)
|
| 15 |
+
for ent in doc.ents:
|
| 16 |
+
if ent._.kb_qid is None or ent.label_ not in ["ORG", "PERSON", "GPE"] or ent.text in seen_entities:
|
| 17 |
+
continue
|
| 18 |
+
if ent._.nerd_score < 0.5:
|
| 19 |
+
continue
|
| 20 |
+
|
| 21 |
+
if len(ent.text.split()) == 1:
|
| 22 |
+
# Single name
|
| 23 |
+
if ent.text in seen_surnames:
|
| 24 |
+
continue
|
| 25 |
+
elif ent.label_ == "PERSON":
|
| 26 |
+
# Multipart name
|
| 27 |
+
seen_surnames.append(ent.text.split()[-1])
|
| 28 |
+
|
| 29 |
+
seen_entities.append(ent.text)
|
| 30 |
+
|
| 31 |
+
if ent._.kb_qid in seen_qids:
|
| 32 |
+
continue
|
| 33 |
+
seen_qids.append(ent._.kb_qid)
|
| 34 |
+
ents.append(ent)
|
| 35 |
+
return ents
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
if __name__ == "__main__":
|
| 39 |
+
ents = extract_entities(input("article: "))
|
| 40 |
+
print()
|
| 41 |
+
print("ENTITIES:")
|
| 42 |
+
for ent in ents:
|
| 43 |
+
print(ent.text, "\t", ent.label_, "\t", ent._.url_wikidata)
|