import spaces
import gradio as gr
import os
import random
import json
import time
import uuid
from PIL import Image
from huggingface_hub import snapshot_download
from diffusers import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler, AutoPipelineForText2Image, DiffusionPipeline
from diffusers import EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, DPMSolverSDEScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
import torch
from typing import Tuple
from datetime import datetime
import requests
import torch
from diffusers import DiffusionPipeline
import importlib
random.seed(time.time())
MAX_SEED = 12211231
CACHE_EXAMPLES = "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4192"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
NUM_IMAGES_PER_PROMPT = 1
cfg = json.load(open("app.conf"))
def load_pipeline_and_scheduler():
clip_skip = cfg.get("clip_skip", 0)
# Download the model files
ckpt_dir = snapshot_download(repo_id=cfg["model_id"])
# Load the models
vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), torch_dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
ckpt_dir,
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16"
)
pipe = pipe.to("cuda")
pipe.unet.set_attn_processor(AttnProcessor2_0())
# Define samplers
samplers = {
"Euler a": EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config),
"DPM++ SDE Karras": DPMSolverSDEScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
}
# Set the scheduler based on the selected sampler
pipe.scheduler = samplers[cfg.get("sampler","DPM++ SDE Karras")]
# Set clip skip
pipe.text_encoder.config.num_hidden_layers -= (clip_skip - 1)
if USE_TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
print("Model Compiled!")
return pipe
pipe = load_pipeline_and_scheduler()
css = '''
.gradio-container{max-width: 560px !important}
body {
background-color: rgb(3, 7, 18);
color: white;
}
.gradio-container {
background-color: rgb(3, 7, 18) !important;
border: none !important;
}
footer {display: none !important;}
'''
js = '''
'''
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU(duration=60)
def generate(prompt, progress=gr.Progress(track_tqdm=True)):
negative_prompt = cfg.get("negative_prompt", "")
style_selection = ""
use_negative_prompt = True
seed = 0
width = cfg.get("width", 1024)
height = cfg.get("width", 768)
inference_steps = cfg.get("inference_steps", 30)
randomize_seed = True
guidance_scale = cfg.get("guidance_scale", 7.5)
prompt_str = cfg.get("prompt", "{prompt}").replace("{prompt}", prompt)
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(pipe.device).manual_seed(seed)
images = pipe(
prompt=prompt_str,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=inference_steps,
generator=generator,
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
output_type="pil",
).images
image_paths = [save_image(img) for img in images]
print(prompt_str, image_paths, [img.url for img in images])
return image_paths
with gr.Blocks(css=css,head=js,fill_height=True) as demo:
with gr.Row(equal_height=False):
with gr.Group():
result = gr.Gallery(
label="Result", show_label=False, columns=1, rows=1, show_share_button=True,
show_download_button=True,allow_preview=True,interactive=False, min_width=cfg.get("window_min_width", 340),height=360
)
with gr.Row():
prompt = gr.Text(
show_label=False,
max_lines=2,
lines=2,
placeholder="Enter what you want to see",
container=False,
scale=5,
min_width=100,
)
random_button = gr.Button("Surprise Me", scale=1, min_width=10)
run_button = gr.Button( "GO!", scale=1, min_width=20, variant="primary",icon="https://huggingface.co/spaces/nsfwalex/sd_card/resolve/main/hot.svg")
def on_demo_load(request: gr.Request):
params = dict(request.query_params)
default_image = cfg.get("cover_path", None)
if default_image:
if isinstance(default_image, list):
# Filter out non-existent paths
existing_images = [img for img in default_image if os.path.exists(img)]
print(f"found cover files: {existing_images}")
if existing_images:
default_image = random.choice(existing_images)
else:
default_image = None
elif not os.path.exists(default_image):
print(f"cover file not existed, {default_image}")
default_image = None
else:
default_image = None
print("load_demo, url params", params, "image", default_image)#, "domain", domain, "iframe", iframe_domain)
if params.get("e", "0") == "1":
#update the image
#bind events
result.value = [Image.open(default_image)]
return [Image.open(default_image)]
return []
result.change(fn=lambda x:x, inputs=[prompt,result], outputs=[], js=f'''(p,img)=>window.uploadImage(p, img,"process_finished","demo_hf_{cfg.get("name")}_card", "finish")''')
run_button.click(generate, inputs=[prompt], outputs=[result], js=f'''(p)=>window.postMessageToParent(p,"process_started","demo_hf_{cfg.get("name")}_card", "click_go")''')
random_button.click(fn=lambda x:x, inputs=[prompt], outputs=[prompt], js='''(p)=>window.g(p)''')
demo.load(fn=on_demo_load, inputs=[], outputs=[result], js='''()=>onDemoLoad()''')
if __name__ == "__main__":
demo.queue().launch(show_api=False)