import os # import yolov5 # # load model # model = yolov5.load('keremberke/yolov5m-license-plate') # # set model parameters # model.conf = 0.5 # NMS confidence threshold # model.iou = 0.25 # NMS IoU threshold # model.agnostic = False # NMS class-agnostic # model.multi_label = False # NMS multiple labels per box # model.max_det = 1000 # maximum number of detections per image # # set image # def license_plate_detect(img): # # perform inference # results = model(img, size=640) # # inference with test time augmentation # results = model(img, augment=True) # # parse results # if len(results.pred): # predictions = results.pred[0] # boxes = predictions[:, :4] # x1, y1, x2, y2 # scores = predictions[:, 4] # categories = predictions[:, 5] # return boxes # from PIL import Image # # image = Image.open(img) # import pytesseract # def read_license_number(img): # boxes = license_plate_detect(img) # if boxes: # return [pytesseract.image_to_string( # image.crop(bbox.tolist())) # for bbox in boxes] from transformers import CLIPProcessor, CLIPModel vit_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") def zero_shot_classification(image, labels): inputs = processor(text=labels, images=image, return_tensors="pt", padding=True) outputs = vit_model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score return logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities # installed_list = [] # # image = Image.open(requests.get(url, stream=True).raw) # def check_solarplant_installed_by_license(license_number_list): # if len(installed_list): # return [license_number in installed_list # for license_number in license_number_list] def check_solarplant_installed_by_image(image, output_label=False): zero_shot_class_labels = ["bus with solar panel grids", "bus without solar panel grids"] probs = zero_shot_classification(image, zero_shot_class_labels) if output_label: return zero_shot_class_labels[probs.argmax().item()] return probs.argmax().item() == 0 # def check_solarplant_broken(image): # zero_shot_class_labels = ["white broken solar panel", # "normal black solar panel grids"] # probs = zero_shot_classification(image, zero_shot_class_labels) # idx = probs.argmax().item() # return zero_shot_class_labels[idx].split(" ")[1-idx] from fastsam import FastSAM, FastSAMPrompt os.system('wget https://huggingface.co/spaces/An-619/FastSAM/resolve/main/weights/FastSAM.pt') model = FastSAM('./FastSAM.pt') DEVICE = 'cpu' def segment_solar_panel(img): # os.system('python Inference.py --model_path FastSAM.pt --img_path bus.jpg --text_prompt "solar panel grids"') img = img.convert("RGB") everything_results = model(img, device=DEVICE, retina_masks=True, imgsz=1024, conf=0.4, iou=0.9,) prompt_process = FastSAMPrompt(img, everything_results, device=DEVICE) # everything prompt ann = prompt_process.everything_prompt() # bbox default shape [0,0,0,0] -> [x1,y1,x2,y2] ann = prompt_process.box_prompt(bbox=[[200, 200, 300, 300]]) # text prompt ann = prompt_process.text_prompt(text='solar panel grids') # point prompt # points default [[0,0]] [[x1,y1],[x2,y2]] # point_label default [0] [1,0] 0:background, 1:foreground ann = prompt_process.point_prompt(points=[[620, 360]], pointlabel=[1]) prompt_process.plot(annotations=ann,output_path='./bus.jpg',) return Image.Open('./bus.jpg') import gradio as gr def greet(img): if check_solarplant_installed_by_image(img): seg = segment_solar_panel(img) return (seg, '嘗試分割太陽能板部分') # return (seg, # "車牌: " + '; '.join(lns) + "\n\n" \ # + "類型: "+ check_solarplant_installed_by_image(img, True) + "\n\n" \ # + "狀態:" + check_solarplant_broken(img)) return (img, "沒有太陽能板部分分割") iface = gr.Interface(fn=greet, inputs="image", outputs=["image", "text"]) iface.launch()