import cv2 import numpy as np import torch from einops import rearrange from .api import MiDaSInference class MidasDetector: def __init__(self): self.model = MiDaSInference(model_type="dpt_hybrid").cuda() def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1): assert input_image.ndim == 3 oh, ow = input_image.shape[:2] nh = oh // 32 * 32 nw = ow // 32 * 32 input_image = cv2.resize(input_image, (nw, nh)) image_depth = input_image with torch.no_grad(): image_depth = torch.from_numpy(image_depth).float().cuda() image_depth = image_depth / 127.5 - 1.0 image_depth = rearrange(image_depth, 'h w c -> 1 c h w') depth = self.model(image_depth)[0] depth_pt = depth.clone() depth_pt -= torch.min(depth_pt) depth_pt /= torch.max(depth_pt) depth_pt = depth_pt.cpu().numpy() depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8) depth_image = cv2.resize(depth_image, (nw, nh)) return depth_image