import streamlit as st from PIL import Image, ImageDraw, ImageFont, ExifTags import cv2 import numpy as np from skimage.metrics import structural_similarity as ssim import pandas as pd import fitz # PyMuPDF import docx from difflib import HtmlDiff, SequenceMatcher import os import uuid import logging import requests import zipfile from typing import Union, Dict, Any import time import base64 import io from io import BytesIO icon_url = "https://raw.githubusercontent.com/noumanjavaid96/ai-as-an-api/refs/heads/master/image%20(39).png" response = requests.get(icon_url) icon_image = Image.open(BytesIO(response.content)) # Page configuration st.set_page_config( page_title="Centurion", page_icon=icon_image, layout="wide", # initial_sidebar_state="expanded" ) # Custom CSS st.html( """ """, ) st.markdown( f"""
Icon
Centurion
""", unsafe_allow_html=True ) st.write("Welcome to the Centurion Analysis Tool! Use the tabs above to navigate.") # Constants UPLOAD_DIR = "uploaded_files" NVIDIA_API_KEY = "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" # Store API key securely" # Create upload directory if it doesn't exist if not os.path.exists(UPLOAD_DIR): os.makedirs(UPLOAD_DIR) # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def main(): # Title and icon using HTML for better control st.markdown( """
CENTURION
""", unsafe_allow_html=True, ) # Create tabs for different functionalities tabs = st.tabs(["Image Comparison", "Image Comparison with Watermarking", "Document Comparison Tool"]) with tabs[0]: image_comparison() with tabs[1]: image_comparison_and_watermarking() with tabs[2]: document_comparison_tool() def image_comparison(): st.header("Image Comparison") st.write(""" Upload two images to compare them and find differences. """) # Upload images col1, col2 = st.columns(2) with col1: st.subheader("Original Image") uploaded_file1 = st.file_uploader("Choose the original image", type=["png", "jpg", "jpeg"], key="comp1") with col2: st.subheader("Image to Compare") uploaded_file2 = st.file_uploader("Choose the image to compare", type=["png", "jpg", "jpeg"], key="comp2") if uploaded_file1 is not None and uploaded_file2 is not None: # Read images image1 = Image.open(uploaded_file1) image2 = Image.open(uploaded_file2) # Convert images to OpenCV format img1 = cv2.cvtColor(np.array(image1), cv2.COLOR_RGB2BGR) img2 = cv2.cvtColor(np.array(image2), cv2.COLOR_RGB2BGR) # Resize images to the same size if necessary if img1.shape != img2.shape: st.warning("Images are not the same size. Resizing the second image to match the first.") img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0])) # Convert to grayscale gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) # Compute SSIM between two images score, diff = ssim(gray1, gray2, full=True) st.write(f"**Structural Similarity Index (SSIM): {score:.4f}**") diff = (diff * 255).astype("uint8") # Threshold the difference image thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] # Find contours of the differences contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Create copies of the images to draw on img1_diff = img1.copy() img2_diff = img2.copy() # Draw rectangles around differences for cnt in contours: x, y, w, h = cv2.boundingRect(cnt) cv2.rectangle(img1_diff, (x, y), (x + w, y + h), (0, 0, 255), 2) cv2.rectangle(img2_diff, (x, y), (x + w, y + h), (0, 0, 255), 2) # Convert images back to RGB for displaying with Streamlit img1_display = cv2.cvtColor(img1_diff, cv2.COLOR_BGR2RGB) img2_display = cv2.cvtColor(img2_diff, cv2.COLOR_BGR2RGB) diff_display = cv2.cvtColor(diff, cv2.COLOR_GRAY2RGB) thresh_display = cv2.cvtColor(thresh, cv2.COLOR_GRAY2RGB) # Display images st.write("## Results") st.write("Differences are highlighted in red boxes.") st.image([img1_display, img2_display], caption=["Original Image with Differences", "Compared Image with Differences"], width=300) st.write("## Difference Image") st.image(diff_display, caption="Difference Image", width=300) st.write("## Thresholded Difference Image") st.image(thresh_display, caption="Thresholded Difference Image", width=300) else: st.info("Please upload both images.") def image_comparison_and_watermarking(): st.header("Image Comparison and Watermarking") st.write(""" Upload two images to compare them, find differences, add a watermark, and compare metadata. """) # Upload images st.subheader("Upload Images") col1, col2 = st.columns(2) with col1: st.subheader("Original Image") uploaded_file1 = st.file_uploader("Choose the original image", type=["png", "jpg", "jpeg"], key="wm1") with col2: st.subheader("Image to Compare") uploaded_file2 = st.file_uploader("Choose the image to compare", type=["png", "jpg", "jpeg"], key="wm2") watermark_text = st.text_input("Enter watermark text (optional):", value="") if uploaded_file1 is not None and uploaded_file2 is not None: # Read images image1 = Image.open(uploaded_file1).convert("RGB") image2 = Image.open(uploaded_file2).convert("RGB") # Display original images st.write("### Uploaded Images") st.image([image1, image2], caption=["Original Image", "Image to Compare"], width=300) # Add watermark if text is provided if watermark_text: st.write("### Watermarked Original Image") image1_watermarked = add_watermark(image1, watermark_text) st.image(image1_watermarked, caption="Original Image with Watermark", width=300) else: image1_watermarked = image1.copy() # Convert images to OpenCV format img1 = cv2.cvtColor(np.array(image1_watermarked), cv2.COLOR_RGB2BGR) img2 = cv2.cvtColor(np.array(image2), cv2.COLOR_RGB2BGR) # Resize images to the same size if necessary if img1.shape != img2.shape: st.warning("Images are not the same size. Resizing the second image to match the first.") img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0])) # Convert to grayscale gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) # Compute SSIM between two images score, diff = ssim(gray1, gray2, full=True) st.write(f"**Structural Similarity Index (SSIM): {score:.4f}**") diff = (diff * 255).astype("uint8") # Threshold the difference image thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] # Find contours of the differences contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Create copies of the images to draw on img1_diff = img1.copy() img2_diff = img2.copy() # Draw rectangles around differences for cnt in contours: x, y, w, h = cv2.boundingRect(cnt) cv2.rectangle(img1_diff, (x, y), (x + w, y + h), (0, 0, 255), 2) cv2.rectangle(img2_diff, (x, y), (x + w, y + h), (0, 0, 255), 2) # Convert images back to RGB for displaying with Streamlit img1_display = cv2.cvtColor(img1_diff, cv2.COLOR_BGR2RGB) img2_display = cv2.cvtColor(img2_diff, cv2.COLOR_BGR2RGB) diff_display = cv2.cvtColor(diff, cv2.COLOR_GRAY2RGB) thresh_display = cv2.cvtColor(thresh, cv2.COLOR_GRAY2RGB) # Display images with differences highlighted st.write("## Results") st.write("Differences are highlighted in red boxes.") st.image([img1_display, img2_display], caption=["Original Image with Differences", "Compared Image with Differences"], width=300) st.write("## Difference Image") st.image(diff_display, caption="Difference Image", width=300) st.write("## Thresholded Difference Image") st.image(thresh_display, caption="Thresholded Difference Image", width=300) # Metadata comparison st.write("## Metadata Comparison") metadata1 = get_metadata(image1) metadata2 = get_metadata(image2) if metadata1 and metadata2: metadata_df = compare_metadata(metadata1, metadata2) if metadata_df is not None: st.write("### Metadata Differences") st.dataframe(metadata_df) else: st.write("No differences in metadata.") else: st.write("Metadata not available for one or both images.") else: st.info("Please upload both images.") def add_watermark(image, text): # Create a blank image for the text with transparent background txt = Image.new('RGBA', image.size, (255, 255, 255, 0)) draw = ImageDraw.Draw(txt) # Choose a font and size font_size = max(20, image.size[0] // 20) try: font = ImageFont.truetype("arial.ttf", font_size) except IOError: font = ImageFont.load_default() # Calculate text bounding box bbox = font.getbbox(text) textwidth = bbox[2] - bbox[0] textheight = bbox[3] - bbox[1] # Position the text at the bottom right x = image.size[0] - textwidth - 10 y = image.size[1] - textheight - 10 # Draw text with semi-transparent fill draw.text((x, y), text, font=font, fill=(255, 255, 255, 128)) # Combine the original image with the text overlay watermarked = Image.alpha_composite(image.convert('RGBA'), txt) return watermarked.convert('RGB') def get_metadata(image): exif_data = {} info = image.getexif() if info: for tag, value in info.items(): decoded = ExifTags.TAGS.get(tag, tag) exif_data[decoded] = value return exif_data def compare_metadata(meta1, meta2): keys = set(meta1.keys()).union(set(meta2.keys())) data = [] for key in keys: value1 = meta1.get(key, "Not Available") value2 = meta2.get(key, "Not Available") if value1 != value2: data.append({"Metadata Field": key, "Original Image": value1, "Compared Image": value2}) if data: df = pd.DataFrame(data) return df else: return None def document_comparison_tool(): st.header("📄 Advanced Document Comparison Tool") st.markdown("### Compare documents and detect changes with AI-powered OCR") # Sidebar settings with st.sidebar: st.header("ℹī¸ About") st.markdown(""" This tool allows you to: - Compare PDF and Word documents - Process images using NVIDIA's OCR - Detect and highlight changes - Generate similarity metrics """) st.header("🛠ī¸ Settings") show_metadata = st.checkbox("Show Metadata", value=True, key='doc_show_metadata') show_detailed_diff = st.checkbox("Show Detailed Differences", value=True, key='doc_show_detailed_diff') # Main content col1, col2 = st.columns(2) with col1: st.markdown("### Original Document") original_file = st.file_uploader( "Upload original document", type=["pdf", "docx", "jpg", "jpeg", "png"], key='doc_original_file', help="Supported formats: PDF, DOCX, JPG, PNG" ) with col2: st.markdown("### Modified Document") modified_file = st.file_uploader( "Upload modified document", type=["pdf", "docx", "jpg", "jpeg", "png"], key='doc_modified_file', help="Supported formats: PDF, DOCX, JPG, PNG" ) if original_file and modified_file: try: with st.spinner("Processing documents..."): # Initialize OCR handler ocr_handler = NVIDIAOCRHandler() # Process files original_file_path = save_uploaded_file(original_file) modified_file_path = save_uploaded_file(modified_file) # Extract text based on file type original_ext = os.path.splitext(original_file.name)[1].lower() modified_ext = os.path.splitext(modified_file.name)[1].lower() # Process original document if original_ext in ['.jpg', '.jpeg', '.png']: original_result = ocr_handler.process_image(original_file_path, f"{UPLOAD_DIR}/original_ocr") with open(f"{UPLOAD_DIR}/original_ocr/text.txt", "r") as f: original_text = f.read() elif original_ext == '.pdf': original_text = extract_text_pdf(original_file_path) else: original_text = extract_text_word(original_file_path) # Process modified document if modified_ext in ['.jpg', '.jpeg', '.png']: modified_result = ocr_handler.process_image(modified_file_path, f"{UPLOAD_DIR}/modified_ocr") with open(f"{UPLOAD_DIR}/modified_ocr/text.txt", "r") as f: modified_text = f.read() elif modified_ext == '.pdf': modified_text = extract_text_pdf(modified_file_path) else: modified_text = extract_text_word(modified_file_path) # Calculate similarity similarity_score = calculate_similarity(original_text, modified_text) # Display results st.markdown("### 📊 Analysis Results") metrics_col1, metrics_col2, metrics_col3 = st.columns(3) with metrics_col1: st.metric("Similarity Score", f"{similarity_score:.2%}") with metrics_col2: st.metric("Changes Detected", "Yes" if similarity_score < 1 else "No") with metrics_col3: st.metric("Processing Status", "Complete ✅") if show_detailed_diff: st.markdown("### 🔍 Detailed Comparison") diff_html = compare_texts(original_text, modified_text) st.components.v1.html(diff_html, height=600, scrolling=True) # Download results st.markdown("### 💾 Download Results") if st.button("Generate Report"): with st.spinner("Generating report..."): # Simulate report generation time.sleep(2) st.success("Report generated successfully!") st.download_button( label="Download Report", data=diff_html, file_name="comparison_report.html", mime="text/html" ) except Exception as e: st.error(f"An error occurred: {str(e)}") logger.error(f"Error processing documents: {str(e)}") else: st.info("👆 Please upload both documents to begin comparison") class NVIDIAOCRHandler: def __init__(self): self.api_key = NVIDIA_API_KEY self.nvai_url = "https://ai.api.nvidia.com/v1/cv/nvidia/ocdrnet" self.assets_url = "https://api.nvcf.nvidia.com/v2/nvcf/assets" self.header_auth = f"Bearer {self.api_key}" def upload_asset(self, input_data: bytes, description: str) -> uuid.UUID: try: with st.spinner("Uploading document to NVIDIA OCR service..."): headers = { "Authorization": self.header_auth, "Content-Type": "application/json", "accept": "application/json", } s3_headers = { "x-amz-meta-nvcf-asset-description": description, "content-type": "image/jpeg", } payload = {"contentType": "image/jpeg", "description": description} response = requests.post(self.assets_url, headers=headers, json=payload, timeout=30) response.raise_for_status() upload_data = response.json() response = requests.put( upload_data["uploadUrl"], data=input_data, headers=s3_headers, timeout=300, ) response.raise_for_status() return uuid.UUID(upload_data["assetId"]) except Exception as e: st.error(f"Error uploading asset: {str(e)}") raise def process_image(self, image_path: str, output_dir: str) -> Dict[str, Any]: try: with st.spinner("Processing document with OCR..."): with open(image_path, "rb") as f: asset_id = self.upload_asset(f.read(), "Input Image") inputs = {"image": f"{asset_id}", "render_label": False} asset_list = f"{asset_id}" headers = { "Content-Type": "application/json", "NVCF-INPUT-ASSET-REFERENCES": asset_list, "NVCF-FUNCTION-ASSET-IDS": asset_list, "Authorization": self.header_auth, } response = requests.post(self.nvai_url, headers=headers, json=inputs) response.raise_for_status() zip_path = f"{output_dir}.zip" with open(zip_path, "wb") as out: out.write(response.content) with zipfile.ZipFile(zip_path, "r") as z: z.extractall(output_dir) os.remove(zip_path) return { "status": "success", "output_directory": output_dir, "files": os.listdir(output_dir) } except Exception as e: st.error(f"Error processing image: {str(e)}") raise def save_uploaded_file(uploaded_file): file_path = os.path.join(UPLOAD_DIR, uploaded_file.name) with open(file_path, "wb") as f: f.write(uploaded_file.getbuffer()) return file_path def extract_text_pdf(file_path): doc = fitz.open(file_path) text = "" for page in doc: text += page.get_text() return text def extract_text_word(file_path): doc = docx.Document(file_path) text = "\n".join([para.text for para in doc.paragraphs]) return text def compare_texts(text1, text2): differ = HtmlDiff() return differ.make_file( text1.splitlines(), text2.splitlines(), fromdesc="Original", todesc="Modified", context=True, numlines=2 ) def draw_bounding_box(image, vertices, confidence, is_deepfake): img = np.array(image) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # Extract coordinates x1, y1 = int(vertices[0]['x']), int(vertices[0]['y']) x2, y2 = int(vertices[1]['x']), int(vertices[1]['y']) # Calculate confidence percentages deepfake_conf = is_deepfake * 100 bbox_conf = confidence * 100 # Choose color based on deepfake confidence (red for high confidence) color = (0, 0, 255) if deepfake_conf > 70 else (0, 255, 0) # Draw bounding box cv2.rectangle(img, (x1, y1), (x2, y2), color, 2) # Add text with confidence scores label = f"Deepfake ({deepfake_conf:.1f}%), Face ({bbox_conf:.1f}%)" cv2.putText(img, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) # Convert back to RGB for Streamlit return cv2.cvtColor(img, cv2.COLOR_BGR2RGB) def process_image(image_bytes): """Process image through NVIDIA's deepfake detection API""" image_b64 = base64.b64encode(image_bytes).decode() headers = { "Authorization": f"Bearer {NVIDIA_API_KEY}", "Content-Type": "application/json", "Accept": "application/json" } payload = { "input": [f"data:image/png;base64,{image_b64}"] } try: response = requests.post( "https://ai.api.nvidia.com/v1/cv/hive/deepfake-image-detection", headers=headers, json=payload ) response.raise_for_status() return response.json() except Exception as e: st.error(f"Error processing image: {str(e)}") return None def main(): st.title("Deepfake Detection") st.write("Upload an image to detect potential deepfakes") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Display original image image_bytes = uploaded_file.getvalue() image = Image.open(io.BytesIO(image_bytes)) col1, col2 = st.columns(2) with col1: st.subheader("Original Image") st.image(image, use_container_width=True) # Process image with st.spinner("Analyzing image..."): result = process_image(image_bytes) if result and 'data' in result: data = result['data'][0] # Display results if 'bounding_boxes' in data: for box in data['bounding_boxes']: # Draw bounding box on image annotated_image = draw_bounding_box( image, box['vertices'], box['bbox_confidence'], box['is_deepfake'] ) with col2: st.subheader("Analysis Result") st.image(annotated_image, use_container_width=True) # Display confidence metrics deepfake_conf = box['is_deepfake'] * 100 bbox_conf = box['bbox_confidence'] * 100 st.write("### Detection Confidence") col3, col4 = st.columns(2) with col3: st.metric("Deepfake Confidence", f"{deepfake_conf:.1f}%") st.progress(deepfake_conf/100) with col4: st.metric("Face Detection Confidence", f"{bbox_conf:.1f}%") st.progress(bbox_conf/100) if deepfake_conf > 90: st.error("⚠ī¸ High probability of deepfake detected!") elif deepfake_conf > 70: st.warning("⚠ī¸ Moderate probability of deepfake detected!") else: st.success("✅ Low probability of deepfake") # Display raw JSON data in expander with st.expander("View Raw JSON Response"): st.json(result) else: st.warning("No faces detected in the image") else: st.error("Failed to process image") def calculate_similarity(text1, text2): matcher = SequenceMatcher(None, text1, text2) return matcher.ratio() if __name__ == "__main__": main()