import re import glob import pickle import os import torch import numpy as np from utils.audio import load_spectrograms from utils.compute_args import compute_args from utils.tokenize import tokenize, create_dict, sent_to_ix, cmumosei_2, cmumosei_7, pad_feature from model_LA import Model_LA device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") working_dir = "." # load model ckpts_path = os.path.join(working_dir, 'ckpt') model_name = "Model_LA_e" # Listing sorted checkpoints ckpts = sorted(glob.glob(os.path.join(ckpts_path, model_name,'best*')), reverse=True) # Load original args args = torch.load(ckpts[0], map_location=torch.device(device))['args'] args = compute_args(args) pretrained_emb = np.load("train_glove.npy") token_to_ix = pickle.load(open("token_to_ix.pkl", "rb")) state_dict = torch.load(ckpts[0], map_location=torch.device(device))['state_dict'] net = Model_LA(args, len(token_to_ix), pretrained_emb).to(device) net.load_state_dict(state_dict) def inference(video_path, text): # data preprocessing # text def clean(w): return re.sub( r"([.,'!?\"()*#:;])", '', w.lower() ).replace('-', ' ').replace('/', ' ') s = [clean(w) for w in text.split() if clean(w) != ''] # Sound _, mel, mag = load_spectrograms(video_path) l_max_len = args.lang_seq_len a_max_len = args.audio_seq_len v_max_len = args.video_seq_len L = sent_to_ix(s, token_to_ix, max_token=l_max_len) A = pad_feature(mel, a_max_len) V = pad_feature(mel, v_max_len) # print shapes print(f"Processed text shape from {len(s)} to {L.shape}") print(f"Processed audio shape from {mel.shape} to {A.shape}") print(f"Processed video shape from {mel.shape} to {V.shape}") net.train(False) x = np.expand_dims(L,axis=0) y = np.expand_dims(A,axis=0) z = np.expand_dims(V,axis=0) x, y, z = torch.from_numpy(x).to(device), torch.from_numpy(y).to(device), torch.from_numpy(z).float().to(device) pred = net(x, y, z).cpu().data.numpy() label_to_ix = ['happy', 'sad', 'angry', 'fear', 'disgust', 'surprise'] result_dict = dict(zip(label_to_ix, pred[0])) return out title="Emotion Recognition" description="This is a demo implementation of EfficientNetV2 Deepfakes Image Detector by using frame-by-frame detection. \ To use it, simply upload your video, or click one of the examples to load them.\ This demo and model represent the work of \"Achieving Face Swapped Deepfakes Detection Using EfficientNetV2\" by Lee Sheng Yeh. \ The examples were extracted from Celeb-DF(V2)(Li et al, 2020) and FaceForensics++(Rossler et al., 2019). Full reference details is available in \"references.txt.\" \ The examples are used under fair use to demo the working of the model only. If any copyright is infringed, please contact the researcher via this email: tp054565@mail.apu.edu.my, the researcher will immediately take down the examples used.\ " examples = [ ['examples/03bSnISJMiM_1.mp4', "IT WAS REALLY GOOD "], ['examples/03bSnISJMiM_5.mp4', "AND THEY SHOULDVE I GUESS "], ] gr.Interface(inference, inputs = ["video", "text"], outputs=["label"], title=title, description=description, examples=examples ).launch(debug=True)