from train import AnimeSegmentation import cv2 import numpy as np from loadimg import load_img import gradio as gr # import spaces import torch model = AnimeSegmentation.from_pretrained("skytnt/anime-seg") device = "cuda" if torch.cuda.is_available() else "cpu" model.eval() model.to(device) img_size = model._hub_mixin_config["img_size"] def get_mask(model, input_img, use_amp=True, s=640): input_img = (input_img / 255).astype(np.float32) h, w = h0, w0 = input_img.shape[:-1] h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s) ph, pw = s - h, s - w img_input = np.zeros([s, s, 3], dtype=np.float32) img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(input_img, (w, h)) img_input = np.transpose(img_input, (2, 0, 1)) img_input = img_input[np.newaxis, :] tmpImg = torch.from_numpy(img_input).type(torch.FloatTensor).to(model.device) with torch.no_grad(): if use_amp: with amp.autocast(): pred = model(tmpImg) pred = pred.to(dtype=torch.float32) else: pred = model(tmpImg) pred = pred.cpu().numpy()[0] pred = np.transpose(pred, (1, 2, 0)) pred = pred[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] pred = cv2.resize(pred, (w0, h0))[:, :, np.newaxis] return pred # @spaces.GPU def process(img): path = load_img(img,output_type="str") img = cv2.cvtColor(cv2.imread(path, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB) mask = get_mask(model, img, use_amp= False, s=img_size) img = np.concatenate((img, mask * img, mask.repeat(3, 2) * 255), axis=1).astype(np.uint8) out = load_img(img) return out demo = gr.Interface(process,"image","image") demo.launch(debug=True)