import pandas as pd import numpy as np import datetime as dt import pandas_datareader as pdr # Read in Stock csv data and convert to have each Ticker as a column. #df = pd.read_csv('us-shareprices-daily.csv', sep=';') #stocks = df.pivot(index="Date", columns="Ticker", values="Adj. Close") #logRet = np.log(stocks/stocks.shift()) # Calculate the Correlation Coefficient for all Stocks #stocksCorr = logRet.corr() # Output to csv #stocksCorr.to_csv (r'correlation_matrix.csv', index = None, header=True) # Enter path of SimFin Data to convert to format for Calculations def convert_simFin(path): df = pd.read_csv(path, sep=';') stocks = df.pivot(index="Date", columns="Ticker", values="Adj. Close") return stocks # Calculate Log returns of the Formatted Stocks def log_of_returns(stocks): log_returns = np.log(stocks/stocks.shift()) return log_returns # Enter Log returns of Stocks to Calculate the Correlation Matrix. def correlation_matrix(lr): return lr.corr()