#-----Import Required Libraries-----# import os import chainlit as cl import tiktoken import openai import fitz import pandas as pd from dotenv import load_dotenv from transformers import pipeline from qdrant_client import QdrantClient from qdrant_client.http import models as qdrant_models from langchain.document_loaders import PyMuPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain_community.vectorstores import Qdrant from langchain.prompts import ChatPromptTemplate from langchain.chat_models import ChatOpenAI from operator import itemgetter from langchain.schema.output_parser import StrOutputParser from langchain.schema.runnable import RunnablePassthrough # Set environment variables load_dotenv() # Load environment variables OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") # Initialize OpenAI openai.api_key = OPENAI_API_KEY # Load embedding model embeddings = OpenAIEmbeddings(model="text-embedding-3-small") loader = PyMuPDFLoader("./data/Airbnb-10k.pdf") documents = loader.load() def tiktoken_len(text): tokens = tiktoken.encoding_for_model("gpt-4o").encode(text) return len(tokens) text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=50, length_function = tiktoken_len ) split_documents = text_splitter.split_documents(documents) # Creating a Qdrant Vector Store qdrant_vector_store = Qdrant.from_documents( split_documents, embeddings, location=":memory:", collection_name="Airbnb-10k", ) # Create a Retriever retriever = qdrant_vector_store.as_retriever() # -- AUGMENTED -- # """ 1. Define a String Template 2. Create a Prompt Template from the String Template """ ### 1. DEFINE STRING TEMPLATE RAG_PROMPT_TEMPLATE = """\ system You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context,\ say you don't know. user User Query: {query} Context: {context} assistant """ # Note that we do not have the response here. We have assistant, we ONLY start, but not followed by <|eot_id> as we do not have a response YET. rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT_TEMPLATE) # Define the LLM llm = ChatOpenAI(model_name="gpt-4o") retrieval_augmented_qa_chain = ( # INVOKE CHAIN WITH: {"query" : "<>"} # "query" : populated by getting the value of the "query" key # "context" : populated by getting the value of the "query" key and chaining it into the base_retriever {"context": itemgetter("query") | retriever, "query": itemgetter("query")} # "context" : is assigned to a RunnablePassthrough object (will not be called or considered in the next step) # by getting the value of the "context" key from the previous step | RunnablePassthrough.assign(context=itemgetter("context")) # "response" : the "context" and "query" values are used to format our prompt object and then piped # into the LLM and stored in a key called "response" # "context" : populated by getting the value of the "context" key from the previous step | {"response": rag_prompt | llm, "context": itemgetter("context")} ) # Sets initial chat settings @cl.on_chat_start async def start_chat(): """ This function will be called at the start of every user session. We will build our LCEL RAG chain here, and store it in the user session. The user session is a dictionary that is unique to each user session, and is stored in the memory of the server. """ settings = { "model": "gpt-4o", "temperature": 0, "max_tokens": 500, "frequency_penalty": 0, "top_p": 1, } cl.user_session.set("settings", settings) # Initializes user session w/ settings and retrieves context based on query @cl.on_message async def handle_message(message: cl.Message): settings = cl.user_session.get("settings") response = retrieval_augmented_qa_chain.invoke({"query": message.content}) # Retrieve and sends content back to user content = response["response"].content pretty_content = content.strip() await cl.Message(content=pretty_content).send()