import os, types import json from enum import Enum import requests import time from typing import Callable, Optional import litellm import httpx from litellm.utils import ModelResponse, Usage from .prompt_templates.factory import prompt_factory, custom_prompt class TogetherAIError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message self.request = httpx.Request(method="POST", url="https://api.together.xyz/inference") self.response = httpx.Response(status_code=status_code, request=self.request) super().__init__( self.message ) # Call the base class constructor with the parameters it needs class TogetherAIConfig(): """ Reference: https://docs.together.ai/reference/inference The class `TogetherAIConfig` provides configuration for the TogetherAI's API interface. Here are the parameters: - `max_tokens` (int32, required): The maximum number of tokens to generate. - `stop` (string, optional): A string sequence that will truncate (stop) the inference text output. For example, "\n\n" will stop generation as soon as the model generates two newlines. - `temperature` (float, optional): A decimal number that determines the degree of randomness in the response. A value of 1 will always yield the same output. A temperature less than 1 favors more correctness and is appropriate for question answering or summarization. A value greater than 1 introduces more randomness in the output. - `top_p` (float, optional): The `top_p` (nucleus) parameter is used to dynamically adjust the number of choices for each predicted token based on the cumulative probabilities. It specifies a probability threshold, below which all less likely tokens are filtered out. This technique helps to maintain diversity and generate more fluent and natural-sounding text. - `top_k` (int32, optional): The `top_k` parameter is used to limit the number of choices for the next predicted word or token. It specifies the maximum number of tokens to consider at each step, based on their probability of occurrence. This technique helps to speed up the generation process and can improve the quality of the generated text by focusing on the most likely options. - `repetition_penalty` (float, optional): A number that controls the diversity of generated text by reducing the likelihood of repeated sequences. Higher values decrease repetition. - `logprobs` (int32, optional): This parameter is not described in the prompt. """ max_tokens: Optional[int]=None stop: Optional[str]=None temperature:Optional[int]=None top_p: Optional[float]=None top_k: Optional[int]=None repetition_penalty: Optional[float]=None logprobs: Optional[int]=None def __init__(self, max_tokens: Optional[int]=None, stop: Optional[str]=None, temperature:Optional[int]=None, top_p: Optional[float]=None, top_k: Optional[int]=None, repetition_penalty: Optional[float]=None, logprobs: Optional[int]=None) -> None: locals_ = locals() for key, value in locals_.items(): if key != 'self' and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return {k: v for k, v in cls.__dict__.items() if not k.startswith('__') and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod)) and v is not None} def validate_environment(api_key): if api_key is None: raise ValueError( "Missing TogetherAI API Key - A call is being made to together_ai but no key is set either in the environment variables or via params" ) headers = { "accept": "application/json", "content-type": "application/json", "Authorization": "Bearer " + api_key, } return headers def completion( model: str, messages: list, api_base: str, model_response: ModelResponse, print_verbose: Callable, encoding, api_key, logging_obj, custom_prompt_dict={}, optional_params=None, litellm_params=None, logger_fn=None, ): headers = validate_environment(api_key) ## Load Config config = litellm.TogetherAIConfig.get_config() for k, v in config.items(): if k not in optional_params: # completion(top_k=3) > togetherai_config(top_k=3) <- allows for dynamic variables to be passed in optional_params[k] = v print_verbose(f"CUSTOM PROMPT DICT: {custom_prompt_dict}; model: {model}") if model in custom_prompt_dict: # check if the model has a registered custom prompt model_prompt_details = custom_prompt_dict[model] prompt = custom_prompt( role_dict=model_prompt_details.get("roles", {}), initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""), final_prompt_value=model_prompt_details.get("final_prompt_value", ""), bos_token=model_prompt_details.get("bos_token", ""), eos_token=model_prompt_details.get("eos_token", ""), messages=messages, ) else: prompt = prompt_factory(model=model, messages=messages) data = { "model": model, "prompt": prompt, "request_type": "language-model-inference", **optional_params, } ## LOGGING logging_obj.pre_call( input=prompt, api_key=api_key, additional_args={"complete_input_dict": data, "headers": headers, "api_base": api_base}, ) ## COMPLETION CALL if ( "stream_tokens" in optional_params and optional_params["stream_tokens"] == True ): response = requests.post( api_base, headers=headers, data=json.dumps(data), stream=optional_params["stream_tokens"], ) return response.iter_lines() else: response = requests.post( api_base, headers=headers, data=json.dumps(data) ) ## LOGGING logging_obj.post_call( input=prompt, api_key=api_key, original_response=response.text, additional_args={"complete_input_dict": data}, ) print_verbose(f"raw model_response: {response.text}") ## RESPONSE OBJECT if response.status_code != 200: raise TogetherAIError( status_code=response.status_code, message=response.text ) completion_response = response.json() if "error" in completion_response: raise TogetherAIError( message=json.dumps(completion_response), status_code=response.status_code, ) elif "error" in completion_response["output"]: raise TogetherAIError( message=json.dumps(completion_response["output"]), status_code=response.status_code ) if len(completion_response["output"]["choices"][0]["text"]) > 0: model_response["choices"][0]["message"]["content"] = completion_response["output"]["choices"][0]["text"] ## CALCULATING USAGE prompt_tokens = len(encoding.encode(prompt)) completion_tokens = len( encoding.encode(model_response["choices"][0]["message"].get("content", "")) ) if "finish_reason" in completion_response["output"]["choices"][0]: model_response.choices[0].finish_reason = completion_response["output"]["choices"][0]["finish_reason"] model_response["created"] = int(time.time()) model_response["model"] = model usage = Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens ) model_response.usage = usage return model_response def embedding(): # logic for parsing in - calling - parsing out model embedding calls pass