from huggingface_hub import from_pretrained_fastai import gradio as gr from fastai.vision.all import * repo_id = "Hitomiblood/CnnLearner_resnet34_chestXrayTPU" learner = from_pretrained_fastai(repo_id) labels = learner.dls.vocab # Definimos una funciĆ³n que se encarga de llevar a cabo las predicciones def predict(img): #img = PILImage.create(img) pred, pred_idx, probs = learner.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} # Creamos la interfaz y la lanzamos. lista = [ 'NORMAL2-IM-0357-0001.jpeg', 'NORMAL2-IM-0370-0001.jpeg', 'NORMAL2-IM-0374-0001.jpeg', 'person18_virus_49.jpeg', 'person29_virus_64.jpeg', 'person127_bacteria_602.jpeg', 'person128_bacteria_605.jpeg', ] gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Label(num_top_classes=2),examples=lista).launch(share=False)