njain commited on
Commit
667eb00
·
1 Parent(s): 9890cb8

Upload webpanel.ipynb

Browse files
Files changed (1) hide show
  1. webpanel.ipynb +15 -22
webpanel.ipynb CHANGED
@@ -69,34 +69,30 @@
69
  },
70
  {
71
  "cell_type": "code",
72
- "execution_count": 13,
73
  "id": "7a7f9587-a4d9-4d78-8d57-24cec677dfd0",
74
  "metadata": {
75
  "tags": []
76
  },
77
  "outputs": [
78
  {
79
- "name": "stdout",
80
- "output_type": "stream",
81
- "text": [
82
- "Launching server at http://localhost:44931\n"
 
 
 
 
83
  ]
84
- },
85
- {
86
- "data": {
87
- "text/plain": [
88
- "<panel.io.server.Server at 0x7f64052afb90>"
89
- ]
90
- },
91
- "execution_count": 13,
92
- "metadata": {},
93
- "output_type": "execute_result"
94
  }
95
  ],
96
  "source": [
97
  "import pandas as pd\n",
98
  "import matplotlib.pyplot as plt\n",
99
  "import panel as pn\n",
 
 
100
  "\n",
101
  "# Load customer churn data\n",
102
  "data_url = 'train.csv'\n",
@@ -106,15 +102,12 @@
106
  "# Calculate churn rate\n",
107
  "churn_rate = df['churn'].value_counts() / len(df)\n",
108
  "\n",
109
- "# Create a bar plot of the churn rate\n",
110
- "fig, ax = plt.subplots()\n",
111
- "ax.bar(churn_rate.index, churn_rate.values)\n",
112
- "ax.set_title('Customer Churn Rate')\n",
113
- "ax.set_xlabel('churn')\n",
114
- "ax.set_ylabel('Rate')\n",
115
  "\n",
116
  "# Create a Panel plot\n",
117
- "plot_pane = pn.pane.Matplotlib(fig, tight=True)\n",
118
  "\n",
119
  "# Create a Panel app layout\n",
120
  "app_layout = pn.Column(\n",
 
69
  },
70
  {
71
  "cell_type": "code",
72
+ "execution_count": 14,
73
  "id": "7a7f9587-a4d9-4d78-8d57-24cec677dfd0",
74
  "metadata": {
75
  "tags": []
76
  },
77
  "outputs": [
78
  {
79
+ "ename": "NameError",
80
+ "evalue": "name 'figure' is not defined",
81
+ "output_type": "error",
82
+ "traceback": [
83
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
84
+ "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
85
+ "\u001b[0;32m<ipython-input-14-25e59633d8a6>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;31m# Create a Bokeh figure\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0mp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfigure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx_range\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mchurn_rate\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtolist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mplot_height\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m400\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtitle\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"Customer Churn Rate\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 15\u001b[0m \u001b[0mp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvbar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mchurn_rate\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtolist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtop\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mchurn_rate\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtolist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwidth\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
86
+ "\u001b[0;31mNameError\u001b[0m: name 'figure' is not defined"
87
  ]
 
 
 
 
 
 
 
 
 
 
88
  }
89
  ],
90
  "source": [
91
  "import pandas as pd\n",
92
  "import matplotlib.pyplot as plt\n",
93
  "import panel as pn\n",
94
+ "from bokeh.plotting import figure\n",
95
+ "from bokeh.models import ColumnDataSource\n",
96
  "\n",
97
  "# Load customer churn data\n",
98
  "data_url = 'train.csv'\n",
 
102
  "# Calculate churn rate\n",
103
  "churn_rate = df['churn'].value_counts() / len(df)\n",
104
  "\n",
105
+ "# Create a Bokeh figure\n",
106
+ "p = figure(x_range=churn_rate.index.tolist(), plot_height=400, title=\"Customer Churn Rate\")\n",
107
+ "p.vbar(x=churn_rate.index.tolist(), top=churn_rate.values.tolist(), width=0.5)\n",
 
 
 
108
  "\n",
109
  "# Create a Panel plot\n",
110
+ "plot_pane = pn.pane.Bokeh(p)\n",
111
  "\n",
112
  "# Create a Panel app layout\n",
113
  "app_layout = pn.Column(\n",