import spaces
import os
import time
import torch
import gradio as gr
from threading import Thread
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
# Model and processor initialization
model_name = "Qwen/QVQ-72B-Preview"
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
device_map="auto",
torch_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(
model_name,
trust_remote_code=True
)
# Footer
footer = """
"""
# Vision model function
@spaces.GPU()
def process_image(image, text_input=None):
try:
# Convert image to PIL format if needed
if not isinstance(image, Image.Image):
image = Image.fromarray(image).convert("RGB")
# Prepare messages
if not text_input:
text_input = "Please describe this image in detail."
messages = [
{
"role": "system",
"content": "You are a helpful and harmless assistant."
},
{
"role": "user",
"content": [
{"image": image},
{"text": text_input}
]
}
]
# Process inputs
response = model.chat(tokenizer, messages)
return response
except Exception as e:
return f"Error processing image: {str(e)}"
# CSS styling
css = """
footer {
visibility: hidden;
}
"""
# Gradio interface
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
with gr.Row():
input_img = gr.Image(label="Input Image")
with gr.Row():
text_input = gr.Textbox(label="Question (Optional)")
with gr.Row():
submit_btn = gr.Button(value="Submit")
with gr.Row():
output_text = gr.Textbox(label="Response")
submit_btn.click(process_image, [input_img, text_input], [output_text])
gr.HTML(footer)
# Launch the app
demo.launch(debug=True)