import pickle import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from tensorflow.keras.models import load_model import streamlit as st # Load datasets books = pd.read_csv("./dataset/books.csv") ratings = pd.read_csv("./dataset/ratings.csv") # Preprocess data user_encoder = LabelEncoder() book_encoder = LabelEncoder() ratings["user_id"] = ratings["user_id"].astype(str) ratings["user_id"] = user_encoder.fit_transform(ratings["user_id"]) ratings["book_id"] = book_encoder.fit_transform(ratings["book_id"]) # Load TF-IDF models with open("tfidf_model_authors.pkl", "rb") as f: tfidf_model_authors = pickle.load(f) with open("tfidf_model_titles.pkl", "rb") as f: tfidf_model_titles = pickle.load(f) # Load collaborative filtering model model_cf = load_model("recommendation_model.keras") # Content-Based Recommendation def content_based_recommendation( query, books, tfidf_model_authors, tfidf_model_titles, num_recommendations=10 ): # Transform book author, title, and description into TF-IDF vectors query_author_tfidf = tfidf_model_authors.transform([query]) query_title_tfidf = tfidf_model_titles.transform([query]) # Compute cosine similarity for authors and titles separately similarity_scores_authors = cosine_similarity( query_author_tfidf, tfidf_model_authors.transform(books["authors"]) ) similarity_scores_titles = cosine_similarity( query_title_tfidf, tfidf_model_titles.transform(books["original_title"]) ) # Combine similarity scores for authors and titles similarity_scores_combined = ( similarity_scores_authors + similarity_scores_titles ) / 2 # Get indices of recommended books recommended_indices = np.argsort(similarity_scores_combined.flatten())[ -num_recommendations: ][::-1] # Get recommended books recommended_books = books.iloc[recommended_indices] return recommended_books # Collaborative Recommendation def collaborative_recommendation(user_id, model_cf, ratings, num_recommendations=10): # Get unrated books for the user unrated_books = ratings[ ~ratings["book_id"].isin(ratings[ratings["user_id"] == user_id]["book_id"]) ]["book_id"].unique() # Predict ratings for unrated books predictions = model_cf.predict( [np.full_like(unrated_books, user_id), unrated_books] ).flatten() # Get top indices based on predictions top_indices = np.argsort(predictions)[-num_recommendations:][::-1] # Get recommended books recommended_books = books.iloc[top_indices][["original_title", "authors"]] return recommended_books # Hybrid Recommendation def hybrid_recommendation( user_id, query, model_cf, books, ratings, tfidf_model_authors, tfidf_model_titles, num_recommendations=10, ): content_based_rec = content_based_recommendation( query, books, tfidf_model_authors, tfidf_model_titles, num_recommendations=num_recommendations, ) collaborative_rec = collaborative_recommendation( user_id, model_cf, ratings, num_recommendations=num_recommendations ) # Combine recommendations from different approaches hybrid_rec = pd.concat([content_based_rec, collaborative_rec]).drop_duplicates( subset="book_id", keep="first" ) return hybrid_rec # Streamlit App st.title("Book Recommendation System") # Sidebar for user input user_input = st.text_input("Enter book name or author:", "") # Get recommendations on button click if st.button("Get Recommendations"): st.write("Content-Based Recommendation:") content_based_rec = content_based_recommendation( user_input, books, tfidf_model_authors, tfidf_model_titles ) st.write(content_based_rec) # Example user ID for collaborative recommendation USER_ID = 0 st.write("Collaborative Recommendation:") collaborative_rec = collaborative_recommendation(USER_ID, model_cf, ratings) st.write(collaborative_rec) st.write("Hybrid Recommendation:") hybrid_rec = hybrid_recommendation( USER_ID, user_input, model_cf, books, ratings, tfidf_model_authors, tfidf_model_titles, ) st.write(hybrid_rec)