from fastai.vision.all import * import gradio as gr # import pathlib # temp = pathlib.PosixPath # pathlib.PosixPath = pathlib.WindowsPath # Provide the full path to the model file model_path = 'models/vehicle-recognizer-v2.pkl' model = load_learner(model_path) cap_labels = model.dls.vocab def recognize_image(image): pred, idx, probs = model.predict(image) return dict(zip(cap_labels, map(float, probs))) image_input = gr.Image() label_output = gr.Label() examples = [ 'test_images/bus.jpg', 'test_images/car.jpg', 'test_images/helicopter.jpg', 'test_images/plane.jpg', 'test_images/Norton_Motorcycle.jpg', 'test_images/pexels-pixabay-163236.jpg', 'test_images/imgpr405.jpg', 'test_images/tractor-385681_1280.jpg', 'test_images/pexels-donald-tong-50911.jpg', 'test_images/360_F_99053872_JO23heKr9O5tmtgICEmEHKcp8N1Orog1.jpg', 'test_images/EMS_Kayaking.jpg', 'test_images/istockphoto-157186300-612x612.jpg', 'test_images/GUEST_93eeb16a-ea58-46bf-bb46-092947a4dc1a.jpg' 'test_images/istockphoto-104300620-612x612.jpg' # 'test_images/rickshaw.jpg', # 'test_images/skateboard.jpg', # 'test_images/scooter.jpg', # 'test_images/tractor.jpg', # 'test_images/van.jpg', # 'test_images/unicycle.jpeg' ] iface = gr.Interface(fn=recognize_image, inputs=image_input, outputs=label_output, examples=examples) iface.launch(inline=False)