Spaces:
Sleeping
Sleeping
nileshhanotia
commited on
Commit
•
a93ae9f
1
Parent(s):
d6ed2ba
Create intent_classifier.py
Browse files- intent_classifier.py +16 -0
intent_classifier.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
|
4 |
+
class IntentClassifier:
|
5 |
+
def __init__(self):
|
6 |
+
self.model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
7 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name, num_labels=2)
|
8 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
9 |
+
self.intents = {0: "database_query", 1: "product_description"}
|
10 |
+
|
11 |
+
def classify(self, query):
|
12 |
+
inputs = self.tokenizer(query, return_tensors="pt", truncation=True, padding=True)
|
13 |
+
outputs = self.model(**inputs)
|
14 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
15 |
+
predicted_class = torch.argmax(probabilities).item()
|
16 |
+
return self.intents[predicted_class], probabilities[0][predicted_class].item()
|