Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
from llama_cpp import Llama
|
4 |
+
from datasets import load_metric
|
5 |
+
|
6 |
+
pipe = pipeline("text-generation", model="varma007ut/Indian_Legal_Assitant")
|
7 |
+
|
8 |
+
prompt = "Summarize the key points of the Indian Contract Act, 1872:"
|
9 |
+
result = pipe(prompt, max_length=200)
|
10 |
+
print(result[0]['generated_text'])
|
11 |
+
|
12 |
+
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained("varma007ut/Indian_Legal_Assitant")
|
14 |
+
model = AutoModelForCausalLM.from_pretrained("varma007ut/Indian_Legal_Assitant")
|
15 |
+
|
16 |
+
prompt = "What are the fundamental rights in the Indian Constitution?"
|
17 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
18 |
+
outputs = model.generate(**inputs, max_length=200)
|
19 |
+
print(tokenizer.decode(outputs[0]))
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
llm = Llama.from_pretrained(
|
24 |
+
repo_id="varma007ut/Indian_Legal_Assitant",
|
25 |
+
filename="ggml-model-q4_0.gguf", # Replace with the actual GGUF filename if different
|
26 |
+
)
|
27 |
+
|
28 |
+
response = llm.create_chat_completion(
|
29 |
+
messages = [
|
30 |
+
{
|
31 |
+
"role": "user",
|
32 |
+
"content": "Explain the concept of judicial review in India."
|
33 |
+
}
|
34 |
+
]
|
35 |
+
)
|
36 |
+
|
37 |
+
print(response['choices'][0]['message']['content'])
|
38 |
+
|
39 |
+
|
40 |
+
bleu = load_metric("bleu")
|
41 |
+
predictions = model.generate(encoded_input)
|
42 |
+
results = bleu.compute(predictions=predictions, references=references)
|