from torch import autocast import requests import torch from PIL import Image from io import BytesIO from diffusers import StableDiffusionImg2ImgPipeline import os MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD') YOUR_TOKEN=MY_SECRET_TOKEN # load the pipeline device = "cpu" model_id_or_path = "CompVis/stable-diffusion-v1-4" pipe = StableDiffusionImg2ImgPipeline.from_pretrained( model_id_or_path, revision="fp16", torch_dtype=torch.float, use_auth_token=YOUR_TOKEN ) # or download via git clone https://huggingface.co/CompVis/stable-diffusion-v1-4 # and pass `model_id_or_path="./stable-diffusion-v1-4"` without having to use `use_auth_token=True`. pipe = pipe.to(device) # let's download an initial image url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" response = requests.get(url) init_image = Image.open(BytesIO(response.content)).convert("RGB") init_image = init_image.resize((768, 512)) prompt = "Lively, illustration of a king, portrait, fantasy, intricate, Scenic, hyperdetailed, hyper realistic king-hearthstone, unreal engine, 4k, smooth, sharp focus, intricate, cinematic lighting, highly detailed, octane, digital painting, artstation, concept art, vibrant colors, Cinema4D, WLOP, 3d render, in the style of hearthstone art by Artgerm and greg rutkowski and magali villeneuve, martina jackova, Giger" with autocast(device): #"cuda"): images = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5).images images[0].save("fantasy_landscape.png")