from torch.functional import Tensor from general_utils import load_model from torch.utils.data import DataLoader import torch import numpy as np def denorm(img): np_input = False if isinstance(img, np.ndarray): img = torch.from_numpy(img) np_input = True mean = torch.Tensor([0.485, 0.456, 0.406]) std = torch.Tensor([0.229, 0.224, 0.225]) img_denorm = (img*std[:,None,None]) + mean[:,None,None] if np_input: img_denorm = np.clip(img_denorm.numpy(), 0, 1) else: img_denorm = torch.clamp(img_denorm, 0, 1) return img_denorm def norm(img): mean = torch.Tensor([0.485, 0.456, 0.406]) std = torch.Tensor([0.229, 0.224, 0.225]) return (img - mean[:,None,None]) / std[:,None,None] def fast_iou_curve(p, g): g = g[p.sort().indices] p = torch.sigmoid(p.sort().values) scores = [] vals = np.linspace(0, 1, 50) for q in vals: n = int(len(g) * q) valid = torch.where(p > q)[0] if len(valid) > 0: n = int(valid[0]) else: n = len(g) fn = g[:n].sum() tn = n - fn tp = g[n:].sum() fp = len(g) - n - tp iou = tp / (tp + fn + fp) precision = tp / (tp + fp) recall = tp / (tp + fn) scores += [iou] return vals, scores def fast_rp_curve(p, g): g = g[p.sort().indices] p = torch.sigmoid(p.sort().values) precisions, recalls = [], [] vals = np.linspace(p.min(), p.max(), 250) for q in p[::100000]: n = int(len(g) * q) valid = torch.where(p > q)[0] if len(valid) > 0: n = int(valid[0]) else: n = len(g) fn = g[:n].sum() tn = n - fn tp = g[n:].sum() fp = len(g) - n - tp iou = tp / (tp + fn + fp) precision = tp / (tp + fp) recall = tp / (tp + fn) precisions += [precision] recalls += [recall] return recalls, precisions # Image processing def img_preprocess(batch, blur=0, grayscale=False, center_context=None, rect=False, rect_color=(255,0,0), rect_width=2, brightness=1.0, bg_fac=1, colorize=False, outline=False, image_size=224): import cv2 rw = rect_width out = [] for img, mask in zip(batch[1], batch[2]): img = img.cpu() if isinstance(img, torch.Tensor) else torch.from_numpy(img) mask = mask.cpu() if isinstance(mask, torch.Tensor) else torch.from_numpy(mask) img *= brightness img_bl = img if blur > 0: # best 5 img_bl = torch.from_numpy(cv2.GaussianBlur(img.permute(1,2,0).numpy(), (15, 15), blur)).permute(2,0,1) if grayscale: img_bl = img_bl[1][None] #img_inp = img_ratio*img*mask + (1-img_ratio)*img_bl # img_inp = img_ratio*img*mask + (1-img_ratio)*img_bl * (1-mask) img_inp = img*mask + (bg_fac) * img_bl * (1-mask) if rect: _, bbox = crop_mask(img, mask, context=0.1) img_inp[:, bbox[2]: bbox[3], max(0, bbox[0]-rw):bbox[0]+rw] = torch.tensor(rect_color)[:,None,None] img_inp[:, bbox[2]: bbox[3], max(0, bbox[1]-rw):bbox[1]+rw] = torch.tensor(rect_color)[:,None,None] img_inp[:, max(0, bbox[2]-1): bbox[2]+rw, bbox[0]:bbox[1]] = torch.tensor(rect_color)[:,None,None] img_inp[:, max(0, bbox[3]-1): bbox[3]+rw, bbox[0]:bbox[1]] = torch.tensor(rect_color)[:,None,None] if center_context is not None: img_inp = object_crop(img_inp, mask, context=center_context, image_size=image_size) if colorize: img_gray = denorm(img) img_gray = cv2.cvtColor(img_gray.permute(1,2,0).numpy(), cv2.COLOR_RGB2GRAY) img_gray = torch.stack([torch.from_numpy(img_gray)]*3) img_inp = torch.tensor([1,0.2,0.2])[:,None,None] * img_gray * mask + bg_fac * img_gray * (1-mask) img_inp = norm(img_inp) if outline: cont = cv2.findContours(mask.byte().numpy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) outline_img = np.zeros(mask.shape, dtype=np.uint8) cv2.drawContours(outline_img, cont[0], -1, thickness=5, color=(255, 255, 255)) outline_img = torch.stack([torch.from_numpy(outline_img)]*3).float() / 255. img_inp = torch.tensor([1,0,0])[:,None,None] * outline_img + denorm(img_inp) * (1- outline_img) img_inp = norm(img_inp) out += [img_inp] return torch.stack(out) def object_crop(img, mask, context=0.0, square=False, image_size=224): img_crop, bbox = crop_mask(img, mask, context=context, square=square) img_crop = pad_to_square(img_crop, channel_dim=0) img_crop = torch.nn.functional.interpolate(img_crop.unsqueeze(0), (image_size, image_size)).squeeze(0) return img_crop def crop_mask(img, mask, context=0.0, square=False): assert img.shape[1:] == mask.shape bbox = [mask.max(0).values.argmax(), mask.size(0) - mask.max(0).values.flip(0).argmax()] bbox += [mask.max(1).values.argmax(), mask.size(1) - mask.max(1).values.flip(0).argmax()] bbox = [int(x) for x in bbox] width, height = (bbox[3] - bbox[2]), (bbox[1] - bbox[0]) # square mask if square: bbox[0] = int(max(0, bbox[0] - context * height)) bbox[1] = int(min(mask.size(0), bbox[1] + context * height)) bbox[2] = int(max(0, bbox[2] - context * width)) bbox[3] = int(min(mask.size(1), bbox[3] + context * width)) width, height = (bbox[3] - bbox[2]), (bbox[1] - bbox[0]) if height > width: bbox[2] = int(max(0, (bbox[2] - 0.5*height))) bbox[3] = bbox[2] + height else: bbox[0] = int(max(0, (bbox[0] - 0.5*width))) bbox[1] = bbox[0] + width else: bbox[0] = int(max(0, bbox[0] - context * height)) bbox[1] = int(min(mask.size(0), bbox[1] + context * height)) bbox[2] = int(max(0, bbox[2] - context * width)) bbox[3] = int(min(mask.size(1), bbox[3] + context * width)) width, height = (bbox[3] - bbox[2]), (bbox[1] - bbox[0]) img_crop = img[:, bbox[2]: bbox[3], bbox[0]: bbox[1]] return img_crop, bbox def pad_to_square(img, channel_dim=2, fill=0): """ add padding such that a squared image is returned """ from torchvision.transforms.functional import pad if channel_dim == 2: img = img.permute(2, 0, 1) elif channel_dim == 0: pass else: raise ValueError('invalid channel_dim') h, w = img.shape[1:] pady1 = pady2 = padx1 = padx2 = 0 if h > w: padx1 = (h - w) // 2 padx2 = h - w - padx1 elif w > h: pady1 = (w - h) // 2 pady2 = w - h - pady1 img_padded = pad(img, padding=(padx1, pady1, padx2, pady2), padding_mode='constant') if channel_dim == 2: img_padded = img_padded.permute(1, 2, 0) return img_padded # qualitative def split_sentence(inp, limit=9): t_new, current_len = [], 0 for k, t in enumerate(inp.split(' ')): current_len += len(t) + 1 t_new += [t+' '] # not last if current_len > limit and k != len(inp.split(' ')) - 1: current_len = 0 t_new += ['\n'] t_new = ''.join(t_new) return t_new from matplotlib import pyplot as plt def plot(imgs, *preds, labels=None, scale=1, cmap=plt.cm.magma, aps=None, gt_labels=None, vmax=None): row_off = 0 if labels is None else 1 _, ax = plt.subplots(len(imgs) + row_off, 1 + len(preds), figsize=(scale * float(1 + 2*len(preds)), scale * float(len(imgs)*2))) [a.axis('off') for a in ax.flatten()] if labels is not None: for j in range(len(labels)): t_new = split_sentence(labels[j], limit=6) ax[0, 1+ j].text(0.5, 0.1, t_new, ha='center', fontsize=3+ 10*scale) for i in range(len(imgs)): ax[i + row_off,0].imshow(imgs[i]) for j in range(len(preds)): img = preds[j][i][0].detach().cpu().numpy() if gt_labels is not None and labels[j] == gt_labels[i]: print(j, labels[j], gt_labels[i]) edgecolor = 'red' if aps is not None: ax[i + row_off, 1 + j].text(30, 70, f'AP: {aps[i]:.3f}', color='red', fontsize=8) else: edgecolor = 'k' rect = plt.Rectangle([0,0], img.shape[0], img.shape[1], facecolor="none", edgecolor=edgecolor, linewidth=3) ax[i + row_off,1 + j].add_patch(rect) if vmax is None: this_vmax = 1 elif vmax == 'per_prompt': this_vmax = max([preds[j][_i][0].max() for _i in range(len(imgs))]) elif vmax == 'per_image': this_vmax = max([preds[_j][i][0].max() for _j in range(len(preds))]) ax[i + row_off,1 + j].imshow(img, vmin=0, vmax=this_vmax, cmap=cmap) # ax[i,1 + j].imshow(preds[j][i][0].detach().cpu().numpy(), vmin=preds[j].min(), vmax=preds[j].max()) plt.tight_layout() plt.subplots_adjust(wspace=0.05, hspace=0.05)