import math from posixpath import basename, dirname, join # import clip from clip.model import convert_weights import torch import json from torch import nn from torch.nn import functional as nnf from torch.nn.modules import activation from torch.nn.modules.activation import ReLU from torchvision import transforms normalize = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) from torchvision.models import ResNet def process_prompts(conditional, prompt_list, conditional_map): # DEPRECATED # randomly sample a synonym words = [conditional_map[int(i)] for i in conditional] words = [syns[torch.multinomial(torch.ones(len(syns)), 1, replacement=True).item()] for syns in words] words = [w.replace('_', ' ') for w in words] if prompt_list is not None: prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True) prompts = [prompt_list[i] for i in prompt_indices] else: prompts = ['a photo of {}'] * (len(words)) return [promt.format(w) for promt, w in zip(prompts, words)] class VITDenseBase(nn.Module): def rescaled_pos_emb(self, new_size): assert len(new_size) == 2 a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape) b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T return torch.cat([self.model.positional_embedding[:1], b]) def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None): with torch.no_grad(): x_inp = nnf.interpolate(x_inp, (384, 384)) x = self.model.patch_embed(x_inp) cls_token = self.model.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks if self.model.dist_token is None: x = torch.cat((cls_token, x), dim=1) else: x = torch.cat((cls_token, self.model.dist_token.expand(x.shape[0], -1, -1), x), dim=1) x = self.model.pos_drop(x + self.model.pos_embed) activations = [] for i, block in enumerate(self.model.blocks): x = block(x) if i in extract_layers: # permute to be compatible with CLIP activations += [x.permute(1,0,2)] x = self.model.norm(x) x = self.model.head(self.model.pre_logits(x[:, 0])) # again for CLIP compatibility # x = x.permute(1, 0, 2) return x, activations, None def sample_prompts(self, words, prompt_list=None): prompt_list = prompt_list if prompt_list is not None else self.prompt_list prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True) prompts = [prompt_list[i] for i in prompt_indices] return [promt.format(w) for promt, w in zip(prompts, words)] def get_cond_vec(self, conditional, batch_size): # compute conditional from a single string if conditional is not None and type(conditional) == str: cond = self.compute_conditional(conditional) cond = cond.repeat(batch_size, 1) # compute conditional from string list/tuple elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str: assert len(conditional) == batch_size cond = self.compute_conditional(conditional) # use conditional directly elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2: cond = conditional # compute conditional from image elif conditional is not None and type(conditional) == torch.Tensor: with torch.no_grad(): cond, _, _ = self.visual_forward(conditional) else: raise ValueError('invalid conditional') return cond def compute_conditional(self, conditional): import clip dev = next(self.parameters()).device if type(conditional) in {list, tuple}: text_tokens = clip.tokenize(conditional).to(dev) cond = self.clip_model.encode_text(text_tokens) else: if conditional in self.precomputed_prompts: cond = self.precomputed_prompts[conditional].float().to(dev) else: text_tokens = clip.tokenize([conditional]).to(dev) cond = self.clip_model.encode_text(text_tokens)[0] return cond class VITDensePredT(VITDenseBase): def __init__(self, extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed', depth=3, extra_blocks=0, reduce_cond=None, fix_shift=False, learn_trans_conv_only=False, refine=None, limit_to_clip_only=False, upsample=False, add_calibration=False, process_cond=None, not_pretrained=False): super().__init__() # device = 'cpu' self.extract_layers = extract_layers self.cond_layer = cond_layer self.limit_to_clip_only = limit_to_clip_only self.process_cond = None if add_calibration: self.calibration_conds = 1 self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None self.add_activation1 = True import timm self.model = timm.create_model('vit_base_patch16_384', pretrained=True) self.model.head = nn.Linear(768, 512 if reduce_cond is None else reduce_cond) for p in self.model.parameters(): p.requires_grad_(False) import clip self.clip_model, _ = clip.load('ViT-B/16', device='cpu', jit=False) # del self.clip_model.visual self.token_shape = (14, 14) # conditional if reduce_cond is not None: self.reduce_cond = nn.Linear(512, reduce_cond) for p in self.reduce_cond.parameters(): p.requires_grad_(False) else: self.reduce_cond = None # self.film = AVAILABLE_BLOCKS['film'](512, 128) self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim) self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim) # DEPRECATED # self.conditional_map = {c['id']: c['synonyms'] for c in json.load(open(cond_map))} assert len(self.extract_layers) == depth self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)]) self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))]) self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)]) trans_conv_ks = (16, 16) self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks) # refinement and trans conv if learn_trans_conv_only: for p in self.parameters(): p.requires_grad_(False) for p in self.trans_conv.parameters(): p.requires_grad_(True) if prompt == 'fixed': self.prompt_list = ['a photo of a {}.'] elif prompt == 'shuffle': self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.'] elif prompt == 'shuffle+': self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.', 'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.', 'a bad photo of a {}.', 'a photo of the {}.'] elif prompt == 'shuffle_clip': from models.clip_prompts import imagenet_templates self.prompt_list = imagenet_templates if process_cond is not None: if process_cond == 'clamp' or process_cond[0] == 'clamp': val = process_cond[1] if type(process_cond) in {list, tuple} else 0.2 def clamp_vec(x): return torch.clamp(x, -val, val) self.process_cond = clamp_vec elif process_cond.endswith('.pth'): shift = torch.load(process_cond) def add_shift(x): return x + shift.to(x.device) self.process_cond = add_shift import pickle precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb')) self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()} def forward(self, inp_image, conditional=None, return_features=False, mask=None): assert type(return_features) == bool # inp_image = inp_image.to(self.model.positional_embedding.device) if mask is not None: raise ValueError('mask not supported') # x_inp = normalize(inp_image) x_inp = inp_image bs, dev = inp_image.shape[0], x_inp.device inp_image_size = inp_image.shape[2:] cond = self.get_cond_vec(conditional, bs) visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers)) activation1 = activations[0] activations = activations[1:] a = None for i, (activation, block, reduce) in enumerate(zip(activations[::-1], self.blocks, self.reduces)): if a is not None: a = reduce(activation) + a else: a = reduce(activation) if i == self.cond_layer: if self.reduce_cond is not None: cond = self.reduce_cond(cond) a = self.film_mul(cond) * a + self.film_add(cond) a = block(a) for block in self.extra_blocks: a = a + block(a) a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens size = int(math.sqrt(a.shape[2])) a = a.view(bs, a.shape[1], size, size) if self.trans_conv is not None: a = self.trans_conv(a) if self.upsample_proj is not None: a = self.upsample_proj(a) a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear') a = nnf.interpolate(a, inp_image_size) if return_features: return a, visual_q, cond, [activation1] + activations else: return a,