import os os.system('pip install git+https://github.com/huggingface/transformers --upgrade') import gradio as gr from transformers import ImageGPTFeatureExtractor, ImageGPTForCausalImageModeling import torch import numpy as np import requests from PIL import Image import matplotlib.pyplot as plt feature_extractor = ImageGPTFeatureExtractor.from_pretrained("openai/imagegpt-medium") model = ImageGPTForCausalImageModeling.from_pretrained("openai/imagegpt-medium") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # load image examples urls = ['https://aeiljuispo.cloudimg.io/v7/https://s3.amazonaws.com/moonup/production/uploads/1608042047613-5f1158120c833276f61f1a84.jpeg', 'https://upload.wikimedia.org/wikipedia/commons/thumb/6/6e/Football_%28soccer_ball%29.svg/1200px-Football_%28soccer_ball%29.svg.png', 'https://i.imgflip.com/4/4t0m5.jpg', 'https://cdn.openai.com/image-gpt/completions/igpt-xl-miscellaneous-2-orig.png', 'https://cdn.openai.com/image-gpt/completions/igpt-xl-miscellaneous-29-orig.png', 'https://cdn.openai.com/image-gpt/completions/igpt-xl-openai-cooking-0-orig.png' ] for idx, url in enumerate(urls): image = Image.open(requests.get(url, stream=True).raw) image.save(f"image_{idx}.png") def process_image(image): # prepare 7 images, shape (7, 1024) batch_size = 7 encoding = feature_extractor([image for _ in range(batch_size)], return_tensors="pt") # create primers samples = encoding.input_ids.numpy() n_px = feature_extractor.size clusters = feature_extractor.clusters n_px_crop = 16 primers = samples.reshape(-1,n_px*n_px)[:,:n_px_crop*n_px] # crop top n_px_crop rows. These will be the conditioning tokens # get conditioned image (from first primer tensor), padded with black pixels to be 32x32 primers_img = np.reshape(np.rint(127.5 * (clusters[primers[0]] + 1.0)), [n_px_crop,n_px, 3]).astype(np.uint8) primers_img = np.pad(primers_img, pad_width=((0,16), (0,0), (0,0)), mode="constant") # generate (no beam search) context = np.concatenate((np.full((batch_size, 1), model.config.vocab_size - 1), primers), axis=1) context = torch.tensor(context).to(device) output = model.generate(input_ids=context, max_length=n_px*n_px + 1, temperature=1.0, do_sample=True, top_k=40) # decode back to images (convert color cluster tokens back to pixels) samples = output[:,1:].cpu().detach().numpy() samples_img = [np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [n_px, n_px, 3]).astype(np.uint8) for s in samples] samples_img = [primers_img] + samples_img # stack images horizontally row1 = np.hstack(samples_img[:4]) row2 = np.hstack(samples_img[4:]) result = np.vstack([row1, row2]) # return as PIL Image completion = Image.fromarray(result) return completion title = "Interactive demo: ImageGPT" description = "Demo for OpenAI's ImageGPT: Generative Pretraining from Pixels. To use it, simply upload an image or use the example image below and click 'submit'. Results will show up in a few seconds." article = "

ImageGPT: Generative Pretraining from Pixels | Official blog

" examples =[f"image_{idx}.png" for idx in range(len(urls))] iface = gr.Interface(fn=process_image, inputs=gr.inputs.Image(type="pil"), outputs=gr.outputs.Image(type="pil", label="Model input + completions"), title=title, description=description, article=article, examples=examples, enable_queue=True) iface.launch(debug=True)