import streamlit as st from parse import parse from nltk import Tree import pandas as pd import re from nltk.tree.prettyprinter import TreePrettyPrinter from annotate import tag_text st.title("ENHG parsing system (demo)") text = st.text_area("""This is a simple demo of a Early New High German (ENHG) tagging and parsing system based on BERT language models.\n\n Enter some ENHG text below!""") st.text("""Example MHG sentences: 1. Im anfang war das Wort / Vnd das Wort war bey Gott / vnd Gott war das Wort. 2. Darinn ain treffenliche statt, genannt Famagosta, in wölicher stat ain edler purger altz herkommens was geseßsen.""") def process_text(text): text = re.sub(r'(["(])(\S)', r'\1 \2', text) text = re.sub(r'(\S)([.,;:?!)"])', r'\1 \2', text) text = re.sub(r' *$', '\n', text, flags=re.MULTILINE) text = re.sub(r' +', '\n', text) return text if text: tokens, tags, probs = tag_text(process_text(text)) # create a table to show the tagged results: zipped = list(zip(tokens, tags, probs)) df = pd.DataFrame(zipped, columns=['Token', 'Tag', 'Prob.']) parse_tree = parse(tokens) # Convert the bracket parse tree into an NLTK Tree mod_tree = str(parse_tree).replace("$\(", "$LRB").replace("$\)", "$RRB") print(mod_tree) # t = Tree.fromstring(re.sub(r'(-\w+)+', '', mod_tree)) # t = Tree.fromstring(mod_tree) # tree_svg = TreePrettyPrinter(t).svg(nodecolor='black', leafcolor='black', funccolor='black') col1 = st.columns(1)[0] col1.header("POS tagging result:") col1.table(df) col2 = st.columns(1)[0] col2.header("Parsing result:") col2.write(mod_tree.replace('_', '\_').replace('$', '\$').replace('*', '\*')) # Display the graph in the Streamlit app # col2.image(tree_svg, use_column_width=True)