ember_details / app.py
nicpopovic's picture
Create app.py
843e384 verified
raw
history blame
38.8 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, STOKEStreamer
from threading import Thread
import json
import torch
import os
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import to_hex
import itertools
import transformers
import time
transformers.logging.set_verbosity_error()
# Variable to define number of instances
n_instances = 1
gpu_name = "CPU"
for i in range(torch.cuda.device_count()):
gpu_name = torch.cuda.get_device_properties(i).name
# Reusing the original MLP class and other functions (unchanged) except those specific to Streamlit
class MLP(torch.nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim=1024, layer_id=0, cuda=False):
super(MLP, self).__init__()
self.fc1 = torch.nn.Linear(input_dim, hidden_dim)
self.fc3 = torch.nn.Linear(hidden_dim, output_dim)
self.layer_id = layer_id
if cuda:
self.device = "cuda"
else:
self.device = "cpu"
self.to(self.device)
def forward(self, x):
x = torch.flatten(x, start_dim=1)
x = torch.relu(self.fc1(x))
x = self.fc3(x)
return torch.argmax(x, dim=-1).cpu().detach(), torch.softmax(x, dim=-1).cpu().detach()
def map_value_to_color(value, colormap_name='tab20c'):
value = np.clip(value, 0.0, 1.0)
colormap = plt.get_cmap(colormap_name)
rgba_color = colormap(value)
css_color = to_hex(rgba_color)
return css_color
# Caching functions for model and classifier
model_cache = {}
def get_multiple_model_and_tokenizer(name, n_instances):
model_instances = []
for _ in range(n_instances):
tok = AutoTokenizer.from_pretrained(name, token=os.getenv('HF_TOKEN'), pad_token_id=128001)
model = AutoModelForCausalLM.from_pretrained(name, token=os.getenv('HF_TOKEN'), torch_dtype="bfloat16", pad_token_id=128001, device_map="auto")
if torch.cuda.is_available():
model.cuda()
model_instances.append((model, tok))
return model_instances
def get_classifiers_for_model(att_size, emb_size, device, config_paths):
config = {
"classifier_token": json.load(open(os.path.join(config_paths["classifier_token"], "config.json"), "r")),
"classifier_span": json.load(open(os.path.join(config_paths["classifier_span"], "config.json"), "r"))
}
layer_id = config["classifier_token"]["layer"]
classifier_span = MLP(att_size, 2, hidden_dim=config["classifier_span"]["classifier_dim"]).to(device)
classifier_span.load_state_dict(torch.load(os.path.join(config_paths["classifier_span"], "checkpoint.pt"), map_location=device, weights_only=True))
classifier_token = MLP(emb_size, len(config["classifier_token"]["label_map"]), layer_id=layer_id, hidden_dim=config["classifier_token"]["classifier_dim"]).to(device)
classifier_token.load_state_dict(torch.load(os.path.join(config_paths["classifier_token"], "checkpoint.pt"), map_location=device, weights_only=True))
return classifier_span, classifier_token, config["classifier_token"]["label_map"]
def find_datasets_and_model_ids(root_dir):
datasets = {}
for root, dirs, files in os.walk(root_dir):
if 'config.json' in files and 'stoke_config.json' in files:
config_path = os.path.join(root, 'config.json')
stoke_config_path = os.path.join(root, 'stoke_config.json')
with open(config_path, 'r') as f:
config_data = json.load(f)
model_id = config_data.get('model_id')
if model_id:
dataset_name = os.path.basename(os.path.dirname(config_path))
with open(stoke_config_path, 'r') as f:
stoke_config_data = json.load(f)
if model_id:
dataset_name = os.path.basename(os.path.dirname(stoke_config_path))
datasets.setdefault(model_id, {})[dataset_name] = stoke_config_data
return datasets
def filter_spans(spans_and_values):
if spans_and_values == []:
return [], []
# Create a dictionary to store spans based on their second index values
span_dict = {}
spans, values = [x[0] for x in spans_and_values], [x[1] for x in spans_and_values]
# Iterate through the spans and update the dictionary with the highest value
for span, value in zip(spans, values):
start, end = span
if start > end or end - start > 15 or start == 0:
continue
current_value = span_dict.get(end, None)
if current_value is None or current_value[1] < value:
span_dict[end] = (span, value)
if span_dict == {}:
return [], []
# Extract the filtered spans and values
filtered_spans, filtered_values = zip(*span_dict.values())
return list(filtered_spans), list(filtered_values)
def remove_overlapping_spans(spans):
# Sort the spans based on their end points
sorted_spans = sorted(spans, key=lambda x: x[0][1])
non_overlapping_spans = []
last_end = float('-inf')
# Iterate through the sorted spans
for span in sorted_spans:
start, end = span[0]
value = span[1]
# If the current span does not overlap with the previous one
if start >= last_end:
non_overlapping_spans.append(span)
last_end = end
else:
# If it overlaps, choose the one with the highest value
existing_span_index = -1
for i, existing_span in enumerate(non_overlapping_spans):
if existing_span[0][1] <= start:
existing_span_index = i
break
if existing_span_index != -1 and non_overlapping_spans[existing_span_index][1] < value:
non_overlapping_spans[existing_span_index] = span
return non_overlapping_spans
def generate_html_no_overlap(tokenized_text, spans):
current_index = 0
html_content = ""
for (span_start, span_end), value in spans:
# Add text before the span
html_content += "".join(tokenized_text[current_index:span_start])
# Add the span with underlining
html_content += "<b><u>"
html_content += "".join(tokenized_text[span_start:span_end])
html_content += "</u></b> "
current_index = span_end
# Add any remaining text after the last span
html_content += "".join(tokenized_text[current_index:])
return html_content
css = """
<style>
.prose {
line-height: 200%;
}
.highlight {
display: inline;
}
.highlight::after {
background-color: var(data-color);
}
.spanhighlight {
padding: 2px 5px;
border-radius: 5px;
}
.tooltip {
position: relative;
display: inline-block;
}
.generated-content {
overflow: scroll;
height: 100%;
}
.tooltip::after {
content: attr(data-tooltip-text); /* Set content from data-tooltip-text attribute */
display: none;
position: absolute;
background-color: #333;
color: #fff;
padding: 5px;
border-radius: 5px;
bottom: 100%; /* Position it above the element */
left: 50%;
transform: translateX(-50%);
width: auto;
min-width: 120px;
margin: 0 auto;
text-align: center;
}
.tooltip:hover::after {
display: block; /* Show the tooltip on hover */
}
.small-text {
padding: 2px 5px;
background-color: white;
border-radius: 5px;
font-size: xx-small;
margin-left: 0.5em;
vertical-align: 0.2em;
font-weight: bold;
color: grey!important;
}
.square {
width: 20px; /* Width of the square */
height: 20px; /* Height of the square */
border: 1px solid black; /* Black outline */
margin: auto;
background-color: white; /* Optional: set the background color */
position: relative;
z-index: 1; /* Higher stacking order for the square */
}
.circle {
width: 16px; /* Width of the square */
height: 16px; /* Height of the square */
border: 1px solid red; /* Black outline */
border-radius: 8px;
margin: auto;
background-color: white; /* Optional: set the background color */
position: relative;
z-index: 1; /* Higher stacking order for the square */
display: block!important;
}
table {
border: 0px!important; /* Black outline */
table-layout: fixed;
width:100%;
}
th, td {
font-weight: normal;
width: 7em!important;
text-align: center!important;
border: 0px!important;
}
tr {
border: 0px!important;
}
.dashed-cell {
position: relative;
width: 50px; /* Adjust width of the table cell */
}
.dashed-cell::before {
content: "";
position: absolute;
top: 0;
bottom: 0;
left: 50%; /* Center the dashed line horizontally */
width: 0; /* No width, just a vertical line */
border-left: 1px dashed black; /* Dashed vertical line */
transform: translateX(-50%); /* Center the line exactly in the middle */
}
.dashed-cell-horizontal::after {
content: "";
position: absolute;
left: 0;
right: 0;
top: 50%; /* Center the dashed horizontal line vertically */
height: 0; /* No height, just a horizontal line */
border-top: 1px dashed black; /* Dashed horizontal line */
transform: translateY(-50%); /* Center the line exactly in the middle */
}
.arrowtip {
width: 0;
height: 0;
border-left: 4px solid transparent;
border-right: 4px solid transparent;
border-bottom: 8px solid black; /* The triangle color */
bottom: 8px; /* The triangle color */
position: relative;
}
.span-cell::after {
content: '';
position: absolute;
top: 50%;
left: -1px;
width: 1px;
height: calc(100% * 6.5); /* Adjust the height as needed to reach the yellow circle */
background-color: red;
}
</style>"""
def generate_html_spanwise(token_strings, tokenwise_preds, spans, tokenizer, new_tags):
# spanwise annotated text
annotated = []
span_ends = -1
in_span = False
out_of_span_tokens = []
for i in reversed(range(len(tokenwise_preds))):
if in_span:
if i >= span_ends:
continue
else:
in_span = False
predicted_class = ""
style = ""
span = None
for s in spans:
if s[1] == i+1:
span = s
if tokenwise_preds[i] != 0 and span is not None:
predicted_class = f"highlight spanhighlight"
style = f"background-color: {map_value_to_color((tokenwise_preds[i]-1)/(len(new_tags)-1))}"
if tokenizer.convert_tokens_to_string([token_strings[i]]).startswith(" "):
annotated.append("Ġ")
span_opener = f"Ġ<span class='{predicted_class}' data-tooltip-text='{new_tags[tokenwise_preds[i]]}' style='{style}'>".replace(" ", "Ġ")
span_end = f"<span class='small-text'>{new_tags[tokenwise_preds[i]]}</span></span>"
annotated.extend(out_of_span_tokens)
out_of_span_tokens = []
span_ends = span[0]
in_span = True
annotated.append(span_end)
annotated.extend([token_strings[x] for x in reversed(range(span[0], span[1]))])
annotated.append(span_opener)
else:
out_of_span_tokens.append(token_strings[i])
annotated.extend(out_of_span_tokens)
return [x for x in reversed(annotated)]
def gen_json(input_text, max_new_tokens):
streamer = STOKEStreamer(tok, classifier_token, classifier_span)
new_tags = label_map
inputs = tok([f" {input_text}"], return_tensors="pt").to(model.device)
generation_kwargs = dict(
inputs, streamer=streamer, max_new_tokens=max_new_tokens,
repetition_penalty=1.2, do_sample=False
)
def generate_async():
model.generate(**generation_kwargs)
thread = Thread(target=generate_async)
thread.start()
# Display generated text as it becomes available
output_text = ""
text_tokenwise = ""
text_spans = ""
removed_spans = ""
tags = []
spans = []
for new_text in streamer:
if new_text[1] is not None and new_text[2] != ['']:
text_tokenwise = ""
output_text = ""
tags.extend(new_text[1])
spans.extend(new_text[-1])
# Tokenwise Classification
for tk, pred in zip(new_text[2],tags):
if pred != 0:
style = f"background-color: {map_value_to_color((pred-1)/(len(new_tags)-1))}"
if tk.startswith(" "):
text_tokenwise += " "
text_tokenwise += f"<span class='tooltip highlight' data-tooltip-text='{new_tags[pred]}' style='{style}'>{tk}</span>"
output_text += tk
else:
text_tokenwise += tk
output_text += tk
# Span Classification
text_spans = ""
if len(spans) > 0:
filtered_spans = remove_overlapping_spans(spans)
text_spans = generate_html_no_overlap(new_text[2], filtered_spans)
if len(spans) - len(filtered_spans) > 0:
removed_spans = f"{len(spans) - len(filtered_spans)} span(s) hidden due to overlap."
else:
for tk in new_text[2]:
text_spans += f"{tk}"
# Spanwise Classification
annotated_tokens = generate_html_spanwise(new_text[2], tags, [x for x in filter_spans(spans)[0]], tok, new_tags)
generated_text_spanwise = tok.convert_tokens_to_string(annotated_tokens).replace("<|endoftext|>", "").replace("<|begin_of_text|>", "")
output = f"{css}<br>"
output += generated_text_spanwise.replace("\n", " ").replace("$", "$") + "\n<br>"
#output += "<h5>Show tokenwise classification</h5>\n" + text_tokenwise.replace("\n", " ").replace("$", "\\$").replace("<|endoftext|>", "").replace("<|begin_of_text|>", "")
#output += "</details><details><summary>Show spans</summary>\n" + text_spans.replace("\n", " ").replace("$", "\\$")
#if removed_spans != "":
# output += f"<br><br><i>({removed_spans})</i>"
list_of_spans = [{"name": tok.convert_tokens_to_string(new_text[2][x[0]:x[1]]).strip(), "type": new_tags[tags[x[1]-1]]} for x in filter_spans(spans)[0] if new_tags[tags[x[1]-1]] != "O"]
out_dict = {"text": output_text.replace("<|endoftext|>", "").replace("<|begin_of_text|>", "".strip()), "entites": list_of_spans}
yield out_dict
return
# Gradio app function to generate text using the assigned model instance
def generate_text(input_text, max_new_tokens=2):
if input_text == "":
yield "Please enter some text first."
return
# Select the next model instance in a round-robin manner
model, tok = next(model_round_robin)
streamer = STOKEStreamer(tok, classifier_token, classifier_span)
new_tags = label_map
inputs = tok([f"{input_text[:200]}"], return_tensors="pt").to(model.device)
generation_kwargs = dict(
inputs, streamer=streamer, max_new_tokens=max_new_tokens,
repetition_penalty=1.2, do_sample=False, temperature=None, top_p=None
)
def generate_async():
model.generate(**generation_kwargs)
thread = Thread(target=generate_async)
thread.start()
# Display generated text as it becomes available
output_text = ""
text_tokenwise = ""
text_spans = ""
removed_spans = ""
tags = []
spans = []
for new_text in streamer:
if new_text[1] is not None and new_text[2] != ['']:
text_tokenwise = ""
output_text = ""
tags.extend(new_text[1])
spans.extend(new_text[-1])
# Tokenwise Classification
for tk, pred in zip(new_text[2],tags):
if pred != 0:
style = f"background-color: {map_value_to_color((pred-1)/(len(new_tags)-1))}"
if tk.startswith(" "):
text_tokenwise += " "
text_tokenwise += f"<span class='tooltip highlight' data-tooltip-text='{new_tags[pred]}' style='{style}'>{tk}</span>"
output_text += tk
else:
text_tokenwise += tk
output_text += tk
# Span Classification
text_spans = ""
if len(spans) > 0:
filtered_spans = remove_overlapping_spans(spans)
text_spans = generate_html_no_overlap(new_text[2], filtered_spans)
if len(spans) - len(filtered_spans) > 0:
removed_spans = f"{len(spans) - len(filtered_spans)} span(s) hidden due to overlap."
else:
for tk in new_text[2]:
text_spans += f"{tk}"
# Spanwise Classification
annotated_tokens = generate_html_spanwise(new_text[2], tags, [x for x in filter_spans(spans)[0]], tok, new_tags)
generated_text_spanwise = tok.convert_tokens_to_string(annotated_tokens).replace("<|endoftext|>", "").replace("<|begin_of_text|>", "")
output = f"{css}<div class=\"generated-content\"><br>"
output += generated_text_spanwise.replace("\n", " ").replace("$", "$") + "\n<br>"
list_of_spans = [{"name": tok.convert_tokens_to_string(new_text[2][x[0]:x[1]]).strip(), "type": new_tags[tags[x[1]-1]]} for x in filter_spans(spans)[0] if new_tags[tags[x[1]-1]] != "O"]
out_dict = {"text": output_text.replace("<|endoftext|>", "").replace("<|begin_of_text|>", "").strip(), "entites": list_of_spans}
output_tokenwise = f"""{css}<div class=\"generated-content\">
<table>"""
output_tokenwise += """<tr><th style="width: 10em!important;">Span detection + label propagation</th>"""
for i, (tk, pred) in enumerate(zip(new_text[2][1:],tags[1:])):
span = ""
if i in [x[0][1]-2 for x in spans] and pred != 0:
top_span = [x for x in spans if x[0][1]-2 == i][0]
spanstring = ''.join(new_text[2][top_span[0][0]:top_span[0][1]])
color = map_value_to_color((pred-1)/(len(new_tags)-1)) + "88"
span = f"<span class='highlight spanhighlight spantext' style='background-color: {color}; position: absolute; transform: translateX(-50%); white-space: nowrap; top: 0.6em;'>{spanstring}<span class='small-text'>{new_tags[pred]}</span></span>"
output_tokenwise += f"<td class='span-cell-2' style='position:relative;'>{span}</td>"
else:
output_tokenwise += f"<td style='position:relative;'></td>"
output_tokenwise += "</tr><tr><td></td>"
output_tokenwise += """<tr><td>Span detection</td>"""
for i, (tk, pred) in enumerate(zip(new_text[2][1:],tags[:])):
span = ""
if i in [x[0][1]-1 for x in spans]:
top_span = [x for x in spans if x[0][1]-1 == i][0]
spanstring = ''.join(new_text[2][top_span[0][0]:top_span[0][1]])
span = f"<span class='highlight spanhighlight spantext' style='border: 1px solid red; background-color: lightgrey; position: absolute; left: 0; transform: translateX(-100%); white-space: nowrap; top: 0.6em;'>{spanstring}</span>"
output_tokenwise += f"<td class='span-cell' style='position:relative;'>{span}</td>"
else:
output_tokenwise += f"<td style='position:relative;'></td>"
output_tokenwise += "</tr><tr><td></td>"
output_tokenwise += """<tr><td style='width: 10em;'>Tokenwise<br>entity typing</td>"""
for tk, pred in zip(new_text[2][1:],tags[1:]):
style = "background-color: lightgrey;"
if pred != 0:
style = f"background-color: {map_value_to_color((pred-1)/(len(new_tags)-1))};"
output_tokenwise += f"<td><span class='highlight spanhighlight' style='{style} font-weight:normal; font-size: xx-small; border: 1px solid red; color: white;'>{new_tags[pred]}</span></td>"
else:
output_tokenwise += "<td></td>"
#output_tokenwise += f"<th><span class='arrowtip'></span></th>"
output_tokenwise += "<td></td></tr><tr style='line-height: 0px!important;'><td></td>"
for tk, pred in zip(new_text[2][1:],tags[1:]):
output_tokenwise += f"<td><span class='arrowtip'></span></td>"
output_tokenwise += "</tr><tr><td></td>"
for i, (tk, pred) in enumerate(zip(new_text[2][1:],tags[1:])):
style = "border-color: lightgray;background-color: transparent;"
if i in [x[0][1]-1 for x in spans]:
style = "background-color: yellow;"
output_tokenwise += f"<td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='{style}margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td>"
output_tokenwise += "</tr><tr><td></td>"
for tk, pred in zip(new_text[2][1:],tags[1:]):
if pred != 0:
style = f"background-color: {map_value_to_color((pred-1)/(len(new_tags)-1))}"
output_tokenwise += f"<td class='dashed-cell'><div class='circle tooltip' data-tooltip-text='{new_tags[pred]}' style='{style}'></div></td>"
else:
output_tokenwise += f"<td class='dashed-cell'><div class='circle' style='border-color: lightgray;background-color: transparent;'></div></td>"
output_tokenwise += "</tr><tr><td></td>"
for i, (tk, pred) in enumerate(zip(new_text[2][1:],tags[1:])):
style = "border-color: lightgray;background-color: transparent;"
if i in [x[0][1]-1 for x in spans]:
style = "background-color: yellow;"
output_tokenwise += f"<td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='{style}margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td>"
output_tokenwise += "</tr><tr style='height: 36px;'><td></td>"
for tk, pred in zip(new_text[2][1:],tags[1:]):
output_tokenwise += f"<td class='dashed-cell'></td>"
output_tokenwise += "</tr><tr><td></td>"
for i, (tk, pred) in enumerate(zip(new_text[2][1:],tags[1:])):
style = "border-color: lightgray;background-color: transparent;"
if i in [x[0][1]-1 for x in spans]:
style = "background-color: yellow;"
output_tokenwise += f"<td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='{style}margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td>"
output_tokenwise += "</tr><tr><td></td>"
for tk, pred in zip(new_text[2][1:],tags[1:]):
output_tokenwise += f"<td><span class='highlight spanhighlight' style='background-color: lightgrey;'>{tk}</span></td>"
output_tokenwise += "</tr>"
#yield output + "</div>"
yield output_tokenwise + "</table></div>"
#time.sleep(0.5)
return
# Load datasets and models for the Gradio app
datasets = find_datasets_and_model_ids("data/")
available_models = list(datasets.keys())
available_datasets = {model: list(datasets[model].keys()) for model in available_models}
available_configs = {model: {dataset: list(datasets[model][dataset].keys()) for dataset in available_datasets[model]} for model in available_models}
def update_datasets(model_name):
return available_datasets[model_name]
def update_configs(model_name, dataset_name):
return available_configs[model_name][dataset_name]
# Load datasets and models for the Gradio app
datasets = find_datasets_and_model_ids("data/")
available_models = list(datasets.keys())
available_datasets = {model: list(datasets[model].keys()) for model in available_models}
available_configs = {model: {dataset: list(datasets[model][dataset].keys()) for dataset in available_datasets[model]} for model in available_models}
# Set the model ID and data configurations
model_id = "meta-llama/Llama-3.2-1B"
data_id = "STOKE_100"
config_id = "default"
# Load n_instances separate instances of the model and tokenizer
model_instances = get_multiple_model_and_tokenizer(model_id, n_instances)
# Set up the round-robin iterator to distribute the requests across model instances
model_round_robin = itertools.cycle(model_instances)
# Load model classifiers
try:
classifier_span, classifier_token, label_map = get_classifiers_for_model(
model_instances[0][0].config.n_head * model_instances[0][0].config.n_layer, model_instances[0][0].config.n_embd, model_instances[0][0].device,
datasets[model_id][data_id][config_id]
)
except:
classifier_span, classifier_token, label_map = get_classifiers_for_model(
model_instances[0][0].config.num_attention_heads * model_instances[0][0].config.num_hidden_layers, model_instances[0][0].config.hidden_size, model_instances[0][0].device,
datasets[model_id][data_id][config_id]
)
initial_output = (css+"""<div class="generated-content">
<table><tr><th style="width: 10em!important;">Span detection + label propagation</th><td style='position:relative;'></td><td style='position:relative;'></td><td style='position:relative;'></td><td style='position:relative;'></td><td class='span-cell-2' style='position:relative;'><span class='highlight spanhighlight spantext' style='background-color: #9ecae188; position: absolute; transform: translateX(-50%); white-space: nowrap; top: 0.6em;'>The New York Film Festival<span class='small-text'>EVENT</span></span></td><td style='position:relative;'></td><td style='position:relative;'></td><td style='position:relative;'></td></tr><tr><td></td><tr><td>Span detection</td><td style='position:relative;'></td><td style='position:relative;'></td><td style='position:relative;'></td><td style='position:relative;'></td><td style='position:relative;'></td><td class='span-cell' style='position:relative;'><span class='highlight spanhighlight spantext' style='border: 1px solid red; background-color: lightgrey; position: absolute; left: 0; transform: translateX(-100%); white-space: nowrap; top: 0.6em;'>The New York Film Festival</span></td><td style='position:relative;'></td><td style='position:relative;'></td><td style='position:relative;'></td></tr><tr><td></td><tr><td style='width: 10em;'>Tokenwise<br>entity typing</td><td></td><td><span class='highlight spanhighlight' style='background-color: #e6550d; font-weight:normal; font-size: xx-small; border: 1px solid red; color: white;'>GPE</span></td><td><span class='highlight spanhighlight' style='background-color: #756bb1; font-weight:normal; font-size: xx-small; border: 1px solid red; color: white;'>ORG</span></td><td><span class='highlight spanhighlight' style='background-color: #756bb1; font-weight:normal; font-size: xx-small; border: 1px solid red; color: white;'>ORG</span></td><td><span class='highlight spanhighlight' style='background-color: #9ecae1; font-weight:normal; font-size: xx-small; border: 1px solid red; color: white;'>EVENT</span></td><td></td><td></td><td></td><td></td></tr><tr style='line-height: 0px!important;'><td></td><td><span class='arrowtip'></span></td><td><span class='arrowtip'></span></td><td><span class='arrowtip'></span></td><td><span class='arrowtip'></span></td><td><span class='arrowtip'></span></td><td><span class='arrowtip'></span></td><td><span class='arrowtip'></span></td><td><span class='arrowtip'></span></td></tr><tr><td></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='background-color: yellow;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td></tr><tr><td></td><td class='dashed-cell'><div class='circle' style='border-color: lightgray;background-color: transparent;'></div></td><td class='dashed-cell'><div class='circle tooltip' data-tooltip-text='GPE' style='background-color: #e6550d'></div></td><td class='dashed-cell'><div class='circle tooltip' data-tooltip-text='ORG' style='background-color: #756bb1'></div></td><td class='dashed-cell'><div class='circle tooltip' data-tooltip-text='ORG' style='background-color: #756bb1'></div></td><td class='dashed-cell'><div class='circle tooltip' data-tooltip-text='EVENT' style='background-color: #9ecae1'></div></td><td class='dashed-cell'><div class='circle' style='border-color: lightgray;background-color: transparent;'></div></td><td class='dashed-cell'><div class='circle' style='border-color: lightgray;background-color: transparent;'></div></td><td class='dashed-cell'><div class='circle' style='border-color: lightgray;background-color: transparent;'></div></td></tr><tr><td></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='background-color: yellow;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td></tr><tr style='height: 36px;'><td></td><td class='dashed-cell'></td><td class='dashed-cell'></td><td class='dashed-cell'></td><td class='dashed-cell'></td><td class='dashed-cell'></td><td class='dashed-cell'></td><td class='dashed-cell'></td><td class='dashed-cell'></td></tr><tr><td></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='background-color: yellow;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td><td class='dashed-cell dashed-cell-horizontal'><div class='square'></div><div class='circle' style='border-color: lightgray;background-color: transparent;margin-top: -14px!important; margin-left: -19px; width: 8px; height: 8px; margin-bottom: 6px!important;'></div></td></tr><tr><td></td><td><span class='highlight spanhighlight' style='background-color: lightgrey;'>The</span></td><td><span class='highlight spanhighlight' style='background-color: lightgrey;'> New</span></td><td><span class='highlight spanhighlight' style='background-color: lightgrey;'> York</span></td><td><span class='highlight spanhighlight' style='background-color: lightgrey;'> Film</span></td><td><span class='highlight spanhighlight' style='background-color: lightgrey;'> Festival</span></td><td><span class='highlight spanhighlight' style='background-color: lightgrey;'> is</span></td><td><span class='highlight spanhighlight' style='background-color: lightgrey;'> an</span></td><td><span class='highlight spanhighlight' style='background-color: lightgrey;'> annual</span></td></tr></table></div>""", {'text': 'Miami is a city in the U.S. state of Florida, and it\'s also known as "The Magic City." It was founded by Henry Flagler on October 28th, 1896.', 'entites': [{'name': 'Miami', 'type': 'GPE'}, {'name': 'U.S.', 'type': 'GPE'}, {'name': 'Florida', 'type': 'GPE'}, {'name': 'The Magic City', 'type': 'WORK_OF_ART'}, {'name': 'Henry Flagler', 'type': 'PERSON'}, {'name': 'October 28th, 1896', 'type': 'DATE'}]})
with gr.Blocks(css="footer{display:none !important} .gradio-container {padding: 0!important; height:400px;}", fill_width=True, fill_height=True) as demo:
with gr.Tab("EMBER Demo"):
with gr.Row():
output_text = gr.HTML(label="Generated Text", value=initial_output[0])
with gr.Group():
with gr.Row():
input_text = gr.Textbox(label="Try with your own text!", value="The New York Film Festival is an", max_length=200, submit_btn=True)
# New HTML output for model info
model_info_html = gr.HTML(
label="Model Info",
value=f'<div style="font-weight: lighter; text-align: center; font-size: x-small;">{model_id} running on {gpu_name}</div>'
)
input_text.submit(
fn=generate_text,
inputs=[input_text],
outputs=[output_text],
concurrency_limit=n_instances,
concurrency_id="queue"
)
# Function to refresh the model info HTML
def refresh_model_info():
return f'<div style="overflow: visible; font-weight: lighter; text-align: center; font-size: x-small;">{model_id} running on {gpu_name}</div>'
# Update the model info HTML on button click
input_text.submit(
fn=refresh_model_info,
inputs=[],
outputs=[model_info_html],
queue=False
)
demo.queue()
demo.launch()