import io import gradio as gr import matplotlib.pyplot as plt import requests, validators import torch import pathlib from PIL import Image import datasets from transformers import AutoFeatureExtractor, AutoModelForImageClassification import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" feature_extractor = AutoFeatureExtractor.from_pretrained("/content/drive/MyDrive/Week 1 Project/saved_model_files") model = AutoModelForImageClassification.from_pretrained("/content/drive/MyDrive/Week 1 Project/saved_model_files") labels = ['angular_leaf_spot', 'bean_rust', 'healthy'] def classify(im): '''FUnction for classifying plant health status''' features = feature_extractor(im, return_tensors='pt') with torch.no_grad(): logits = model(**features).logits probability = torch.nn.functional.softmax(logits, dim=-1) probs = probability[0].detach().numpy() confidences = {label: float(probs[i]) for i, label in enumerate(labels)} return confidences def get_original_image(url_input): '''Get image from URL''' if validators.url(url_input): image = Image.open(requests.get(url_input, stream=True).raw) return image def detect_plant_health(url_input,image_input,webcam_input): if validators.url(url_input): image = Image.open(requests.get(url_input, stream=True).raw) elif image_input: image = image_input elif webcam_input: image = webcam_input #Make prediction label_probs = classify(image) return label_probs def set_example_image(example: list) -> dict: return gr.Image.update(value=example[0]) def set_example_url(example: list) -> dict: return gr.Textbox.update(value=example[0]), gr.Image.update(value=get_original_image(example[0])) title = """

Plant Health Classification with ViT

""" description = """ This Plant Health classifier app was built to detect the health of plants using images of leaves by fine-tuning a Vision Transformer (ViT) [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the [Beans](https://huggingface.co/datasets/beans) dataset. The finetuned model has an accuracy of 98.4% on the test (unseen) dataset and 100% on the validation dataset. How to use the app: - Upload an image via 3 options, uploading the image from local device, using a URL (image from the web) or a webcam - The app will take a few seconds to generate a prediction with the following labels: - *'angular_leaf_spot'* - *'bean_rust'* - *'healthy'* - Feel free to click the image examples as well. """ urls = ["https://www.healthbenefitstimes.com/green-beans/","https://huggingface.co/nateraw/vit-base-beans/resolve/main/angular_leaf_spot.jpeg", "https://huggingface.co/nateraw/vit-base-beans/resolve/main/bean_rust.jpeg"] images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))] twitter_link = """ [![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi) """ css = ''' h1#title { text-align: center; } ''' demo = gr.Blocks(css=css) with demo: gr.Markdown(title) gr.Markdown(description) gr.Markdown(twitter_link) with gr.Tabs(): with gr.TabItem('Image Upload'): with gr.Row(): with gr.Column(): img_input = gr.Image(type='pil',shape=(750,750)) label_from_upload= gr.Label() with gr.Row(): example_images = gr.Examples(examples=images,inputs=[img_input]) img_but = gr.Button('Classify') with gr.TabItem('Image URL'): with gr.Row(): with gr.Column(): url_input = gr.Textbox(lines=2,label='Enter valid image URL here..') original_image = gr.Image(shape=(750,750)) url_input.change(get_original_image, url_input, original_image) with gr.Column(): label_from_url = gr.Label() with gr.Row(): example_url = gr.Examples(examples=urls,inputs=[url_input]) url_but = gr.Button('Classify') with gr.TabItem('WebCam'): with gr.Row(): with gr.Column(): web_input = gr.Image(source='webcam',type='pil',shape=(750,750),streaming=True) with gr.Column(): label_from_webcam= gr.Label() cam_but = gr.Button('Classify') url_but.click(detect_plant_health,inputs=[url_input,img_input,web_input],outputs=[label_from_url],queue=True) img_but.click(detect_plant_health,inputs=[url_input,img_input,web_input],outputs=[label_from_upload],queue=True) cam_but.click(detect_plant_health,inputs=[url_input,img_input,web_input],outputs=[label_from_webcam],queue=True) gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-plant-health)") demo.launch(debug=True,enable_queue=True)