import whisper import os from pytube import YouTube import pandas as pd import plotly_express as px import nltk import plotly.graph_objects as go from optimum.onnxruntime import ORTModelForSequenceClassification from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelForSeq2SeqLM from sentence_transformers import SentenceTransformer, CrossEncoder, util import streamlit as st import en_core_web_lg import validators import re import itertools import numpy as np from bs4 import BeautifulSoup import base64, time from annotated_text import annotated_text import pickle, math import wikipedia from pyvis.network import Network import torch nltk.download('punkt') from nltk import sent_tokenize time_str = time.strftime("%d%m%Y-%H%M%S") HTML_WRAPPER = """
{}
""" @st.experimental_singleton(suppress_st_warning=True) def load_models(): q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone") ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english") kg_model = AutoModelForSeq2SeqLM.from_pretrained("Babelscape/rebel-large") kg_tokenizer = AutoTokenizer.from_pretrained("Babelscape/rebel-large") q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone") ner_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english") sent_pipe = pipeline("text-classification",model=q_model, tokenizer=q_tokenizer) sum_pipe = pipeline("summarization",model="facebook/bart-large-cnn", tokenizer="facebook/bart-large-cnn",clean_up_tokenization_spaces=True) ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True) cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2') return sent_pipe, sum_pipe, ner_pipe, cross_encoder, kg_model, kg_tokenizer @st.experimental_singleton(suppress_st_warning=True) def load_asr_model(asr_model_name): asr_model = whisper.load_model(asr_model_name) return asr_model @st.experimental_singleton(suppress_st_warning=True) def load_sbert(model_name): sbert = SentenceTransformer(model_name) return sbert @st.experimental_memo(suppress_st_warning=True) def embed_text(query,corpus,embedding_model): '''Embed text and generate semantic search scores''' #If model is e5 then apply prefixes to query and passage if embedding_model == 'intfloat/e5-base': search_input = 'query: '+ query passages_emb = ['passage: ' + sentence for sentence in corpus] elif embedding_model == 'hkunlp/instructor-base': search_input = [['Represent the Financial question; Input: ', query, 0]] passages_emb = [['Represent the Financial statement for retrieval; Input: ',sentence,0] for sentence in corpus] else: search_input = query passages_emb = corpus #Embed corpus and question corpus_embedding = sbert.encode(passages_emb, convert_to_tensor=True) question_embedding = sbert.encode(search_input, convert_to_tensor=True) question_embedding = question_embedding.cpu() corpus_embedding = corpus_embedding.cpu() # #Calculate similarity scores and rank hits = util.semantic_search(question_embedding, corpus_embedding, top_k=2) hits = hits[0] # Get the hits for the first query # ##### Re-Ranking ##### # Now, score all retrieved passages with the cross_encoder cross_inp = [[search_input, corpus[hit['corpus_id']]] for hit in hits] if embedding_model == 'hkunlp/instructor-base': result = [] for sublist in cross_inp: question = sublist[0][0][1] document = sublist[1][1] result.append([question, document]) cross_inp = result cross_scores = cross_encoder.predict(cross_inp) # Sort results by the cross-encoder scores for idx in range(len(cross_scores)): hits[idx]['cross-score'] = cross_scores[idx] # Output of top-3 hits from re-ranker # st.markdown("\n-------------------------\n") # st.subheader(f"Top-{top_k} Cross-Encoder Re-ranker hits") hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) return hits @st.experimental_singleton(suppress_st_warning=True) def get_spacy(): nlp = en_core_web_lg.load() return nlp @st.experimental_memo(suppress_st_warning=True) def inference(link, upload, _asr_model): '''Convert Youtube video or Audio upload to text''' if validators.url(link): yt = YouTube(link) title = yt.title path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp4") results = _asr_model.transcribe(path, task='transcribe', language='en') return results['text'], yt.title elif upload: results = _asr_model.trasncribe(upload, task='transcribe', language='en') return results['text'], "Transcribed Earnings Audio" @st.experimental_memo(suppress_st_warning=True) def sentiment_pipe(earnings_text): '''Determine the sentiment of the text''' earnings_sentences = chunk_long_text(earnings_text,150,1,1) earnings_sentiment = sent_pipe(earnings_sentences) return earnings_sentiment, earnings_sentences @st.experimental_memo(suppress_st_warning=True) def summarize_text(text_to_summarize,max_len,min_len): '''Summarize text with HF model''' summarized_text = sum_pipe(text_to_summarize,max_length=max_len,min_length=min_len,clean_up_tokenization_spaces=True,no_repeat_ngram_size=4, encoder_no_repeat_ngram_size=3, repetition_penalty=3.5, num_beams=4, early_stopping=True) summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text]) return summarized_text @st.experimental_memo(suppress_st_warning=True) def clean_text(text): '''Clean all text''' text = text.encode("ascii", "ignore").decode() # unicode text = re.sub(r"https*\S+", " ", text) # url text = re.sub(r"@\S+", " ", text) # mentions text = re.sub(r"#\S+", " ", text) # hastags text = re.sub(r"\s{2,}", " ", text) # over spaces return text @st.experimental_memo(suppress_st_warning=True) def chunk_long_text(text,threshold,window_size=3,stride=2): '''Preprocess text and chunk for semantic search and sentiment analysis''' #Convert cleaned text into sentences sentences = sent_tokenize(text) out = [] #Limit the length of each sentence to a threshold for chunk in sentences: if len(chunk.split()) < threshold: out.append(chunk) else: words = chunk.split() num = int(len(words)/threshold) for i in range(0,num*threshold+1,threshold): out.append(' '.join(words[i:threshold+i])) passages = [] #Combine sentences into a window of size window_size for paragraph in [out]: for start_idx in range(0, len(paragraph), stride): end_idx = min(start_idx+window_size, len(paragraph)) passages.append(" ".join(paragraph[start_idx:end_idx])) return passages @st.experimental_memo(suppress_st_warning=True) def chunk_and_preprocess_text(text,thresh=450): """Chunk text longer than n tokens for summarization""" sentences = sent_tokenize(text) current_chunk = 0 chunks = [] for sentence in sentences: if len(chunks) == current_chunk + 1: if len(chunks[current_chunk]) + len(sentence.split(" ")) <= thresh: chunks[current_chunk].extend(sentence.split(" ")) else: current_chunk += 1 chunks.append(sentence.split(" ")) else: chunks.append(sentence.split(" ")) for chunk_id in range(len(chunks)): chunks[chunk_id] = " ".join(chunks[chunk_id]) return chunks def summary_downloader(raw_text): b64 = base64.b64encode(raw_text.encode()).decode() new_filename = "new_text_file_{}_.txt".format(time_str) st.markdown("#### Download Summary as a File ###") href = f'Click to Download!!' st.markdown(href,unsafe_allow_html=True) @st.experimental_memo(suppress_st_warning=True) def get_all_entities_per_sentence(text): doc = nlp(''.join(text)) sentences = list(doc.sents) entities_all_sentences = [] for sentence in sentences: entities_this_sentence = [] # SPACY ENTITIES for entity in sentence.ents: entities_this_sentence.append(str(entity)) # FLAIR ENTITIES (CURRENTLY NOT USED) # sentence_entities = Sentence(str(sentence)) # tagger.predict(sentence_entities) # for entity in sentence_entities.get_spans('ner'): # entities_this_sentence.append(entity.text) # XLM ENTITIES entities_xlm = [entity["word"] for entity in ner_pipe(str(sentence))] for entity in entities_xlm: entities_this_sentence.append(str(entity)) entities_all_sentences.append(entities_this_sentence) return entities_all_sentences @st.experimental_memo(suppress_st_warning=True) def get_all_entities(text): all_entities_per_sentence = get_all_entities_per_sentence(text) return list(itertools.chain.from_iterable(all_entities_per_sentence)) @st.experimental_memo(suppress_st_warning=True) def get_and_compare_entities(article_content,summary_output): all_entities_per_sentence = get_all_entities_per_sentence(article_content) entities_article = list(itertools.chain.from_iterable(all_entities_per_sentence)) all_entities_per_sentence = get_all_entities_per_sentence(summary_output) entities_summary = list(itertools.chain.from_iterable(all_entities_per_sentence)) matched_entities = [] unmatched_entities = [] for entity in entities_summary: if any(entity.lower() in substring_entity.lower() for substring_entity in entities_article): matched_entities.append(entity) elif any( np.inner(sbert.encode(entity, show_progress_bar=False), sbert.encode(art_entity, show_progress_bar=False)) > 0.9 for art_entity in entities_article): matched_entities.append(entity) else: unmatched_entities.append(entity) matched_entities = list(dict.fromkeys(matched_entities)) unmatched_entities = list(dict.fromkeys(unmatched_entities)) matched_entities_to_remove = [] unmatched_entities_to_remove = [] for entity in matched_entities: for substring_entity in matched_entities: if entity != substring_entity and entity.lower() in substring_entity.lower(): matched_entities_to_remove.append(entity) for entity in unmatched_entities: for substring_entity in unmatched_entities: if entity != substring_entity and entity.lower() in substring_entity.lower(): unmatched_entities_to_remove.append(entity) matched_entities_to_remove = list(dict.fromkeys(matched_entities_to_remove)) unmatched_entities_to_remove = list(dict.fromkeys(unmatched_entities_to_remove)) for entity in matched_entities_to_remove: matched_entities.remove(entity) for entity in unmatched_entities_to_remove: unmatched_entities.remove(entity) return matched_entities, unmatched_entities @st.experimental_memo(suppress_st_warning=True) def highlight_entities(article_content,summary_output): markdown_start_red = "" markdown_start_green = "" markdown_end = "" matched_entities, unmatched_entities = get_and_compare_entities(article_content,summary_output) print(summary_output) for entity in matched_entities: summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_green + entity + markdown_end,summary_output) for entity in unmatched_entities: summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_red + entity + markdown_end,summary_output) print("") print(summary_output) print("") print(summary_output) soup = BeautifulSoup(summary_output, features="html.parser") return HTML_WRAPPER.format(soup) def display_df_as_table(model,top_k,score='score'): '''Display the df with text and scores as a table''' df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in model[0:top_k]],columns=['Score','Text']) df['Score'] = round(df['Score'],2) return df def make_spans(text,results): results_list = [] for i in range(len(results)): results_list.append(results[i]['label']) facts_spans = [] facts_spans = list(zip(sent_tokenizer(text),results_list)) return facts_spans ##Fiscal Sentiment by Sentence def fin_ext(text): results = remote_clx(sent_tokenizer(text)) return make_spans(text,results) ## Knowledge Graphs code def extract_relations_from_model_output(text): relations = [] relation, subject, relation, object_ = '', '', '', '' text = text.strip() current = 'x' text_replaced = text.replace("", "").replace("", "").replace("", "") for token in text_replaced.split(): if token == "": current = 't' if relation != '': relations.append({ 'head': subject.strip(), 'type': relation.strip(), 'tail': object_.strip() }) relation = '' subject = '' elif token == "": current = 's' if relation != '': relations.append({ 'head': subject.strip(), 'type': relation.strip(), 'tail': object_.strip() }) object_ = '' elif token == "": current = 'o' relation = '' else: if current == 't': subject += ' ' + token elif current == 's': object_ += ' ' + token elif current == 'o': relation += ' ' + token if subject != '' and relation != '' and object_ != '': relations.append({ 'head': subject.strip(), 'type': relation.strip(), 'tail': object_.strip() }) return relations def from_text_to_kb(text, model, tokenizer, article_url, span_length=128, article_title=None, article_publish_date=None, verbose=False): # tokenize whole text inputs = tokenizer([text], return_tensors="pt") # compute span boundaries num_tokens = len(inputs["input_ids"][0]) if verbose: print(f"Input has {num_tokens} tokens") num_spans = math.ceil(num_tokens / span_length) if verbose: print(f"Input has {num_spans} spans") overlap = math.ceil((num_spans * span_length - num_tokens) / max(num_spans - 1, 1)) spans_boundaries = [] start = 0 for i in range(num_spans): spans_boundaries.append([start + span_length * i, start + span_length * (i + 1)]) start -= overlap if verbose: print(f"Span boundaries are {spans_boundaries}") # transform input with spans tensor_ids = [inputs["input_ids"][0][boundary[0]:boundary[1]] for boundary in spans_boundaries] tensor_masks = [inputs["attention_mask"][0][boundary[0]:boundary[1]] for boundary in spans_boundaries] inputs = { "input_ids": torch.stack(tensor_ids), "attention_mask": torch.stack(tensor_masks) } # generate relations num_return_sequences = 3 gen_kwargs = { "max_length": 256, "length_penalty": 0, "num_beams": 3, "num_return_sequences": num_return_sequences } generated_tokens = model.generate( **inputs, **gen_kwargs, ) # decode relations decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=False) # create kb kb = KB() i = 0 for sentence_pred in decoded_preds: current_span_index = i // num_return_sequences relations = extract_relations_from_model_output(sentence_pred) for relation in relations: relation["meta"] = { article_url: { "spans": [spans_boundaries[current_span_index]] } } kb.add_relation(relation, article_title, article_publish_date) i += 1 return kb def get_article(url): article = Article(url) article.download() article.parse() return article def from_url_to_kb(url, model, tokenizer): article = get_article(url) config = { "article_title": article.title, "article_publish_date": article.publish_date } kb = from_text_to_kb(article.text, model, tokenizer, article.url, **config) return kb def get_news_links(query, lang="en", region="US", pages=1): googlenews = GoogleNews(lang=lang, region=region) googlenews.search(query) all_urls = [] for page in range(pages): googlenews.get_page(page) all_urls += googlenews.get_links() return list(set(all_urls)) def from_urls_to_kb(urls, model, tokenizer, verbose=False): kb = KB() if verbose: print(f"{len(urls)} links to visit") for url in urls: if verbose: print(f"Visiting {url}...") try: kb_url = from_url_to_kb(url, model, tokenizer) kb.merge_with_kb(kb_url) except ArticleException: if verbose: print(f" Couldn't download article at url {url}") return kb def save_network_html(kb, filename="network.html"): # create network net = Network(directed=True, width="700px", height="700px") # nodes color_entity = "#00FF00" for e in kb.entities: net.add_node(e, shape="circle", color=color_entity) # edges for r in kb.relations: net.add_edge(r["head"], r["tail"], title=r["type"], label=r["type"]) # save network net.repulsion( node_distance=200, central_gravity=0.2, spring_length=200, spring_strength=0.05, damping=0.09 ) net.set_edge_smooth('dynamic') net.show(filename) def save_kb(kb, filename): with open(filename, "wb") as f: pickle.dump(kb, f) class CustomUnpickler(pickle.Unpickler): def find_class(self, module, name): if name == 'KB': return KB return super().find_class(module, name) def load_kb(filename): res = None with open(filename, "rb") as f: res = CustomUnpickler(f).load() return res class KB(): def __init__(self): self.entities = {} # { entity_title: {...} } self.relations = [] # [ head: entity_title, type: ..., tail: entity_title, # meta: { article_url: { spans: [...] } } ] self.sources = {} # { article_url: {...} } def merge_with_kb(self, kb2): for r in kb2.relations: article_url = list(r["meta"].keys())[0] source_data = kb2.sources[article_url] self.add_relation(r, source_data["article_title"], source_data["article_publish_date"]) def are_relations_equal(self, r1, r2): return all(r1[attr] == r2[attr] for attr in ["head", "type", "tail"]) def exists_relation(self, r1): return any(self.are_relations_equal(r1, r2) for r2 in self.relations) def merge_relations(self, r2): r1 = [r for r in self.relations if self.are_relations_equal(r2, r)][0] # if different article article_url = list(r2["meta"].keys())[0] if article_url not in r1["meta"]: r1["meta"][article_url] = r2["meta"][article_url] # if existing article else: spans_to_add = [span for span in r2["meta"][article_url]["spans"] if span not in r1["meta"][article_url]["spans"]] r1["meta"][article_url]["spans"] += spans_to_add def get_wikipedia_data(self, candidate_entity): try: page = wikipedia.page(candidate_entity, auto_suggest=False) entity_data = { "title": page.title, "url": page.url, "summary": page.summary } return entity_data except: return None def add_entity(self, e): self.entities[e["title"]] = {k:v for k,v in e.items() if k != "title"} def add_relation(self, r, article_title, article_publish_date): # check on wikipedia candidate_entities = [r["head"], r["tail"]] entities = [self.get_wikipedia_data(ent) for ent in candidate_entities] # if one entity does not exist, stop if any(ent is None for ent in entities): return # manage new entities for e in entities: self.add_entity(e) # rename relation entities with their wikipedia titles r["head"] = entities[0]["title"] r["tail"] = entities[1]["title"] # add source if not in kb article_url = list(r["meta"].keys())[0] if article_url not in self.sources: self.sources[article_url] = { "article_title": article_title, "article_publish_date": article_publish_date } # manage new relation if not self.exists_relation(r): self.relations.append(r) else: self.merge_relations(r) def get_textual_representation(self): res = "" res += "### Entities\n" for e in self.entities.items(): # shorten summary e_temp = (e[0], {k:(v[:100] + "..." if k == "summary" else v) for k,v in e[1].items()}) res += f"- {e_temp}\n" res += "\n" res += "### Relations\n" for r in self.relations: res += f"- {r}\n" res += "\n" res += "### Sources\n" for s in self.sources.items(): res += f"- {s}\n" return res def save_network_html(kb, filename="network.html"): # create network net = Network(directed=True, width="700px", height="700px", bgcolor="#eeeeee") # nodes color_entity = "#00FF00" for e in kb.entities: net.add_node(e, shape="circle", color=color_entity) # edges for r in kb.relations: net.add_edge(r["head"], r["tail"], title=r["type"], label=r["type"]) # save network net.repulsion( node_distance=200, central_gravity=0.2, spring_length=200, spring_strength=0.05, damping=0.09 ) net.set_edge_smooth('dynamic') net.show(filename) nlp = get_spacy() sent_pipe, sum_pipe, ner_pipe, cross_encoder, kg_model, kg_tokenizer = load_models() sbert = load_sbert('all-MiniLM-L12-v2')