import numpy as np import matplotlib.pyplot as plt def function(x, y, a=1, b=1, c=1, d=0, e=0): return -a * np.sqrt((b * x)**2 + (c * y)**2 + d) + e def inverse_function(f, t, a, b, c, d, e): term = ((f - e) / (-a))**2 - d if term < 0: return None, None x = (1/np.sqrt(b)) * np.sqrt(term) * np.cos(t) y = (1/np.sqrt(c)) * np.sqrt(term) * np.sin(t) return x, y def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False): rows, cols = image_shape y, x = np.mgrid[step/2:rows:step, step/2:cols:step].reshape(2, -1).astype(int) max_dim = max(rows, cols) scale = max_dim / 1000 direction = -1 if reverse else 1 fig, ax = plt.subplots(figsize=(cols/50, rows/50), dpi=100) ax.quiver(x, y, direction * gx[y, x], direction * -gy[y, x], scale=scale, scale_units='width', width=0.002 * max_dim / 500, headwidth=8, headlength=12, headaxislength=0, color='black', minshaft=2, minlength=0, pivot='tail') ax.set_xlim(0, cols) ax.set_ylim(rows, 0) ax.set_aspect('equal') ax.axis('off') fig.tight_layout(pad=0) fig.canvas.draw() vector_field = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) vector_field = vector_field.reshape(fig.canvas.get_width_height()[::-1] + (3,)) plt.close(fig) return vector_field def apply_inverse_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20): rows, cols = image.shape[:2] max_dim = max(rows, cols) center_y = int(center[1] * rows) center_x = int(center[0] * cols) center_y = abs(rows - center_y) pixel_radius = int(max_dim * radius) y, x = np.ogrid[:rows, :cols] y = (y - center_y) / max_dim x = (x - center_x) / max_dim dist_from_center = np.sqrt(x**2 + y**2) z = func(x, y) gy, gx = np.gradient(z) def sigmoid(x, center, steepness): return 1 / (1+ np.exp(-steepness * (x - center))) mask = edge_mask * center_mask gx = gx * mask gy = gy * mask magnitude = np.sqrt(gx**2 + gy**2) magnitude[magnitude == 0] = 1 gx = gx / magnitude gy = gy / magnitude scale_factor = strength * np.log(max_dim) / 100 gx = gx * scale_factor * mask gy = gy * scale_factor * mask x_new = x + gx y_new = y + gy x_new = y_new * max_dim + center_x y_new = y_new * max_dim + center_y x_new = np.clip(x_new, 0, cols - 1) y_new = np.clip(y_new, 0, rows - 1) if __name__ == '__main__': x = 3 y = 2 t = np.arctan2(y, x) a, b, c, d, e = 1, 1, 1, 0, 0 print(x, y) function = function(3, 2) print(function) inverse_function = inverse_function(function, t, a, b, c, d, e) print(inverse_function)