import joblib import pandas as pd from sklearn.metrics.pairwise import cosine_similarity from sklearn.feature_extraction.text import TfidfVectorizer import argparse def main(): parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument('--input', type=str, help="Input file path (file should be in parquet format and have 'prompt' and 'completion' columns)") parser.add_argument('--output', type=str, help='Output file path') args = parser.parse_args() df = pd.read_parquet(args.input) # fit the vectorizer on the prompt column prompt_tfidf_vectorizer = TfidfVectorizer() prompt_tfidf_vectorizer.fit(df['prompt']) # save the vectorizer joblib.dump(prompt_tfidf_vectorizer, args.output + 'prompt-vectorizer.pkl') # get the tfidf_matrix prompt_tfidf_matrix = prompt_tfidf_vectorizer.transform(df['prompt']) # save the tfidf_matrix joblib.dump(prompt_tfidf_matrix, args.output + 'prompt-tfidf_matrix.pkl') # fit the vectorizer on the completion column completion_tfidf_vectorizer = TfidfVectorizer() completion_tfidf_vectorizer.fit(df['completion']) # save the vectorizer joblib.dump(completion_tfidf_vectorizer, args.output + 'completion-vectorizer.pkl') # get the tfidf_matrix completion_tfidf_matrix = completion_tfidf_vectorizer.transform(df['completion']) # save the tfidf_matrix joblib.dump(completion_tfidf_matrix, args.output + 'completion_tfidf-matrix.pkl') print("Done!") if __name__ == '__main__': main() # example usage: python create-tfidf-matrix.py --input fine-tuning-data.parquet --output ./