import torch from vencoder.dphubert.model import wav2vec2_model from vencoder.encoder import SpeechEncoder class DPHubert(SpeechEncoder): def __init__(self, vec_path="pretrain/DPHuBERT-sp0.75.pth", device=None): super().__init__() print("load model(s) from {}".format(vec_path)) if device is None: self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") else: self.dev = torch.device(device) ckpt = torch.load(vec_path) self.hidden_dim = 768 self.model = wav2vec2_model(**ckpt["config"]).to(self.dev) self.model.load_state_dict(ckpt["state_dict"], strict=False) def encoder(self, wav): feats = wav if feats.dim() == 2: # double channels feats = feats.mean(-1) assert feats.dim() == 1, feats.dim() feats = feats[None, :] with torch.no_grad(): with torch.inference_mode(): units = self.model(feats)[0] return units.transpose(1,2)