import math from math import sqrt import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Mish class Conv1d(torch.nn.Conv1d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) nn.init.kaiming_normal_(self.weight) class SinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): device = x.device half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device=device) * -emb) emb = x[:, None] * emb[None, :] emb = torch.cat((emb.sin(), emb.cos()), dim=-1) return emb class ResidualBlock(nn.Module): def __init__(self, encoder_hidden, residual_channels, dilation): super().__init__() self.residual_channels = residual_channels self.dilated_conv = nn.Conv1d( residual_channels, 2 * residual_channels, kernel_size=3, padding=dilation, dilation=dilation ) self.diffusion_projection = nn.Linear(residual_channels, residual_channels) self.conditioner_projection = nn.Conv1d(encoder_hidden, 2 * residual_channels, 1) self.output_projection = nn.Conv1d(residual_channels, 2 * residual_channels, 1) def forward(self, x, conditioner, diffusion_step): diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1) conditioner = self.conditioner_projection(conditioner) y = x + diffusion_step y = self.dilated_conv(y) + conditioner # Using torch.split instead of torch.chunk to avoid using onnx::Slice gate, filter = torch.split(y, [self.residual_channels, self.residual_channels], dim=1) y = torch.sigmoid(gate) * torch.tanh(filter) y = self.output_projection(y) # Using torch.split instead of torch.chunk to avoid using onnx::Slice residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1) return (x + residual) / math.sqrt(2.0), skip class WaveNet(nn.Module): def __init__(self, in_dims=128, n_layers=20, n_chans=384, n_hidden=256): super().__init__() self.input_projection = Conv1d(in_dims, n_chans, 1) self.diffusion_embedding = SinusoidalPosEmb(n_chans) self.mlp = nn.Sequential( nn.Linear(n_chans, n_chans * 4), Mish(), nn.Linear(n_chans * 4, n_chans) ) self.residual_layers = nn.ModuleList([ ResidualBlock( encoder_hidden=n_hidden, residual_channels=n_chans, dilation=1 ) for i in range(n_layers) ]) self.skip_projection = Conv1d(n_chans, n_chans, 1) self.output_projection = Conv1d(n_chans, in_dims, 1) nn.init.zeros_(self.output_projection.weight) def forward(self, spec, diffusion_step, cond): """ :param spec: [B, 1, M, T] :param diffusion_step: [B, 1] :param cond: [B, M, T] :return: """ x = spec.squeeze(1) x = self.input_projection(x) # [B, residual_channel, T] x = F.relu(x) diffusion_step = self.diffusion_embedding(diffusion_step) diffusion_step = self.mlp(diffusion_step) skip = [] for layer in self.residual_layers: x, skip_connection = layer(x, cond, diffusion_step) skip.append(skip_connection) x = torch.sum(torch.stack(skip), dim=0) / sqrt(len(self.residual_layers)) x = self.skip_projection(x) x = F.relu(x) x = self.output_projection(x) # [B, mel_bins, T] return x[:, None, :, :]