import pandas as pd import numpy as np from data_utils.data_simulation import UpliftSimulationReady class EDASimulationReady: def __init__(self, files_path): self.files_path = files_path def load_conversions(self, file_name): uplift_simulation = UpliftSimulationReady(self.files_path) df = uplift_simulation.load_uplift_data(file_name) sum_conversions = df.pivot_table(values=['conversion','discounted_price','benefit'], index='treatment_group_key', aggfunc=[np.sum], margins=False) mean_conversions = df.pivot_table(values=['conversion','discounted_price','benefit'], index='treatment_group_key', aggfunc=[np.mean], margins=False) # save to csv sum_conversions.to_csv(self.files_path + 'sum_conversions.csv') mean_conversions.to_csv(self.files_path + 'mean_conversions.csv') return sum_conversions, mean_conversions