import torch import torch.nn as nn from .constants import N_MELS class ConvBlockRes(nn.Module): def __init__(self, in_channels, out_channels, momentum=0.01): super(ConvBlockRes, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False), nn.BatchNorm2d(out_channels, momentum=momentum), nn.ReLU(), nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False), nn.BatchNorm2d(out_channels, momentum=momentum), nn.ReLU(), ) if in_channels != out_channels: self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1)) self.is_shortcut = True else: self.is_shortcut = False def forward(self, x): if self.is_shortcut: return self.conv(x) + self.shortcut(x) else: return self.conv(x) + x class ResEncoderBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01): super(ResEncoderBlock, self).__init__() self.n_blocks = n_blocks self.conv = nn.ModuleList() self.conv.append(ConvBlockRes(in_channels, out_channels, momentum)) for i in range(n_blocks - 1): self.conv.append(ConvBlockRes(out_channels, out_channels, momentum)) self.kernel_size = kernel_size if self.kernel_size is not None: self.pool = nn.AvgPool2d(kernel_size=kernel_size) def forward(self, x): for i in range(self.n_blocks): x = self.conv[i](x) if self.kernel_size is not None: return x, self.pool(x) else: return x class ResDecoderBlock(nn.Module): def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01): super(ResDecoderBlock, self).__init__() out_padding = (0, 1) if stride == (1, 2) else (1, 1) self.n_blocks = n_blocks self.conv1 = nn.Sequential( nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(3, 3), stride=stride, padding=(1, 1), output_padding=out_padding, bias=False), nn.BatchNorm2d(out_channels, momentum=momentum), nn.ReLU(), ) self.conv2 = nn.ModuleList() self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum)) for i in range(n_blocks-1): self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum)) def forward(self, x, concat_tensor): x = self.conv1(x) x = torch.cat((x, concat_tensor), dim=1) for i in range(self.n_blocks): x = self.conv2[i](x) return x class Encoder(nn.Module): def __init__(self, in_channels, in_size, n_encoders, kernel_size, n_blocks, out_channels=16, momentum=0.01): super(Encoder, self).__init__() self.n_encoders = n_encoders self.bn = nn.BatchNorm2d(in_channels, momentum=momentum) self.layers = nn.ModuleList() self.latent_channels = [] for i in range(self.n_encoders): self.layers.append(ResEncoderBlock(in_channels, out_channels, kernel_size, n_blocks, momentum=momentum)) self.latent_channels.append([out_channels, in_size]) in_channels = out_channels out_channels *= 2 in_size //= 2 self.out_size = in_size self.out_channel = out_channels def forward(self, x): concat_tensors = [] x = self.bn(x) for i in range(self.n_encoders): _, x = self.layers[i](x) concat_tensors.append(_) return x, concat_tensors class Intermediate(nn.Module): def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01): super(Intermediate, self).__init__() self.n_inters = n_inters self.layers = nn.ModuleList() self.layers.append(ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)) for i in range(self.n_inters-1): self.layers.append(ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)) def forward(self, x): for i in range(self.n_inters): x = self.layers[i](x) return x class Decoder(nn.Module): def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01): super(Decoder, self).__init__() self.layers = nn.ModuleList() self.n_decoders = n_decoders for i in range(self.n_decoders): out_channels = in_channels // 2 self.layers.append(ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)) in_channels = out_channels def forward(self, x, concat_tensors): for i in range(self.n_decoders): x = self.layers[i](x, concat_tensors[-1-i]) return x class TimbreFilter(nn.Module): def __init__(self, latent_rep_channels): super(TimbreFilter, self).__init__() self.layers = nn.ModuleList() for latent_rep in latent_rep_channels: self.layers.append(ConvBlockRes(latent_rep[0], latent_rep[0])) def forward(self, x_tensors): out_tensors = [] for i, layer in enumerate(self.layers): out_tensors.append(layer(x_tensors[i])) return out_tensors class DeepUnet(nn.Module): def __init__(self, kernel_size, n_blocks, en_de_layers=5, inter_layers=4, in_channels=1, en_out_channels=16): super(DeepUnet, self).__init__() self.encoder = Encoder(in_channels, N_MELS, en_de_layers, kernel_size, n_blocks, en_out_channels) self.intermediate = Intermediate(self.encoder.out_channel // 2, self.encoder.out_channel, inter_layers, n_blocks) self.tf = TimbreFilter(self.encoder.latent_channels) self.decoder = Decoder(self.encoder.out_channel, en_de_layers, kernel_size, n_blocks) def forward(self, x): x, concat_tensors = self.encoder(x) x = self.intermediate(x) concat_tensors = self.tf(concat_tensors) x = self.decoder(x, concat_tensors) return x class DeepUnet0(nn.Module): def __init__(self, kernel_size, n_blocks, en_de_layers=5, inter_layers=4, in_channels=1, en_out_channels=16): super(DeepUnet0, self).__init__() self.encoder = Encoder(in_channels, N_MELS, en_de_layers, kernel_size, n_blocks, en_out_channels) self.intermediate = Intermediate(self.encoder.out_channel // 2, self.encoder.out_channel, inter_layers, n_blocks) self.tf = TimbreFilter(self.encoder.latent_channels) self.decoder = Decoder(self.encoder.out_channel, en_de_layers, kernel_size, n_blocks) def forward(self, x): x, concat_tensors = self.encoder(x) x = self.intermediate(x) x = self.decoder(x, concat_tensors) return x