import math from functools import partial import torch import torch.nn.functional as F from einops import rearrange, repeat from local_attention import LocalAttention from torch import nn #import fast_transformers.causal_product.causal_product_cuda def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device = None): b, h, *_ = data.shape # (batch size, head, length, model_dim) # normalize model dim data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1. # what is ration?, projection_matrix.shape[0] --> 266 ratio = (projection_matrix.shape[0] ** -0.5) projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h) projection = projection.type_as(data) #data_dash = w^T x data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection) # diag_data = D**2 diag_data = data ** 2 diag_data = torch.sum(diag_data, dim=-1) diag_data = (diag_data / 2.0) * (data_normalizer ** 2) diag_data = diag_data.unsqueeze(dim=-1) #print () if is_query: data_dash = ratio * ( torch.exp(data_dash - diag_data - torch.max(data_dash, dim=-1, keepdim=True).values) + eps) else: data_dash = ratio * ( torch.exp(data_dash - diag_data + eps))#- torch.max(data_dash)) + eps) return data_dash.type_as(data) def orthogonal_matrix_chunk(cols, qr_uniform_q = False, device = None): unstructured_block = torch.randn((cols, cols), device = device) q, r = torch.linalg.qr(unstructured_block.cpu(), mode='reduced') q, r = map(lambda t: t.to(device), (q, r)) # proposed by @Parskatt # to make sure Q is uniform https://arxiv.org/pdf/math-ph/0609050.pdf if qr_uniform_q: d = torch.diag(r, 0) q *= d.sign() return q.t() def exists(val): return val is not None def empty(tensor): return tensor.numel() == 0 def default(val, d): return val if exists(val) else d def cast_tuple(val): return (val,) if not isinstance(val, tuple) else val class PCmer(nn.Module): """The encoder that is used in the Transformer model.""" def __init__(self, num_layers, num_heads, dim_model, dim_keys, dim_values, residual_dropout, attention_dropout): super().__init__() self.num_layers = num_layers self.num_heads = num_heads self.dim_model = dim_model self.dim_values = dim_values self.dim_keys = dim_keys self.residual_dropout = residual_dropout self.attention_dropout = attention_dropout self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)]) # METHODS ######################################################################################################## def forward(self, phone, mask=None): # apply all layers to the input for (i, layer) in enumerate(self._layers): phone = layer(phone, mask) # provide the final sequence return phone # ==================================================================================================================== # # CLASS _ E N C O D E R L A Y E R # # ==================================================================================================================== # class _EncoderLayer(nn.Module): """One layer of the encoder. Attributes: attn: (:class:`mha.MultiHeadAttention`): The attention mechanism that is used to read the input sequence. feed_forward (:class:`ffl.FeedForwardLayer`): The feed-forward layer on top of the attention mechanism. """ def __init__(self, parent: PCmer): """Creates a new instance of ``_EncoderLayer``. Args: parent (Encoder): The encoder that the layers is created for. """ super().__init__() self.conformer = ConformerConvModule(parent.dim_model) self.norm = nn.LayerNorm(parent.dim_model) self.dropout = nn.Dropout(parent.residual_dropout) # selfatt -> fastatt: performer! self.attn = SelfAttention(dim = parent.dim_model, heads = parent.num_heads, causal = False) # METHODS ######################################################################################################## def forward(self, phone, mask=None): # compute attention sub-layer phone = phone + (self.attn(self.norm(phone), mask=mask)) phone = phone + (self.conformer(phone)) return phone def calc_same_padding(kernel_size): pad = kernel_size // 2 return (pad, pad - (kernel_size + 1) % 2) # helper classes class Swish(nn.Module): def forward(self, x): return x * x.sigmoid() class Transpose(nn.Module): def __init__(self, dims): super().__init__() assert len(dims) == 2, 'dims must be a tuple of two dimensions' self.dims = dims def forward(self, x): return x.transpose(*self.dims) class GLU(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): out, gate = x.chunk(2, dim=self.dim) return out * gate.sigmoid() class DepthWiseConv1d(nn.Module): def __init__(self, chan_in, chan_out, kernel_size, padding): super().__init__() self.padding = padding self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups = chan_in) def forward(self, x): x = F.pad(x, self.padding) return self.conv(x) class ConformerConvModule(nn.Module): def __init__( self, dim, causal = False, expansion_factor = 2, kernel_size = 31, dropout = 0.): super().__init__() inner_dim = dim * expansion_factor padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0) self.net = nn.Sequential( nn.LayerNorm(dim), Transpose((1, 2)), nn.Conv1d(dim, inner_dim * 2, 1), GLU(dim=1), DepthWiseConv1d(inner_dim, inner_dim, kernel_size = kernel_size, padding = padding), #nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(), Swish(), nn.Conv1d(inner_dim, dim, 1), Transpose((1, 2)), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) def linear_attention(q, k, v): if v is None: #print (k.size(), q.size()) out = torch.einsum('...ed,...nd->...ne', k, q) return out else: k_cumsum = k.sum(dim = -2) #k_cumsum = k.sum(dim = -2) D_inv = 1. / (torch.einsum('...nd,...d->...n', q, k_cumsum.type_as(q)) + 1e-8) context = torch.einsum('...nd,...ne->...de', k, v) #print ("TRUEEE: ", context.size(), q.size(), D_inv.size()) out = torch.einsum('...de,...nd,...n->...ne', context, q, D_inv) return out def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling = 0, qr_uniform_q = False, device = None): nb_full_blocks = int(nb_rows / nb_columns) #print (nb_full_blocks) block_list = [] for _ in range(nb_full_blocks): q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device) block_list.append(q) # block_list[n] is a orthogonal matrix ... (model_dim * model_dim) #print (block_list[0].size(), torch.einsum('...nd,...nd->...n', block_list[0], torch.roll(block_list[0],1,1))) #print (nb_rows, nb_full_blocks, nb_columns) remaining_rows = nb_rows - nb_full_blocks * nb_columns #print (remaining_rows) if remaining_rows > 0: q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device) #print (q[:remaining_rows].size()) block_list.append(q[:remaining_rows]) final_matrix = torch.cat(block_list) if scaling == 0: multiplier = torch.randn((nb_rows, nb_columns), device = device).norm(dim = 1) elif scaling == 1: multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device = device) else: raise ValueError(f'Invalid scaling {scaling}') return torch.diag(multiplier) @ final_matrix class FastAttention(nn.Module): def __init__(self, dim_heads, nb_features = None, ortho_scaling = 0, causal = False, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, no_projection = False): super().__init__() nb_features = default(nb_features, int(dim_heads * math.log(dim_heads))) self.dim_heads = dim_heads self.nb_features = nb_features self.ortho_scaling = ortho_scaling self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows = self.nb_features, nb_columns = dim_heads, scaling = ortho_scaling, qr_uniform_q = qr_uniform_q) projection_matrix = self.create_projection() self.register_buffer('projection_matrix', projection_matrix) self.generalized_attention = generalized_attention self.kernel_fn = kernel_fn # if this is turned on, no projection will be used # queries and keys will be softmax-ed as in the original efficient attention paper self.no_projection = no_projection self.causal = causal @torch.no_grad() def redraw_projection_matrix(self): projections = self.create_projection() self.projection_matrix.copy_(projections) del projections def forward(self, q, k, v): device = q.device if self.no_projection: q = q.softmax(dim = -1) k = torch.exp(k) if self.causal else k.softmax(dim = -2) else: create_kernel = partial(softmax_kernel, projection_matrix = self.projection_matrix, device = device) q = create_kernel(q, is_query = True) k = create_kernel(k, is_query = False) attn_fn = linear_attention if not self.causal else self.causal_linear_fn if v is None: out = attn_fn(q, k, None) return out else: out = attn_fn(q, k, v) return out class SelfAttention(nn.Module): def __init__(self, dim, causal = False, heads = 8, dim_head = 64, local_heads = 0, local_window_size = 256, nb_features = None, feature_redraw_interval = 1000, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, dropout = 0., no_projection = False): super().__init__() assert dim % heads == 0, 'dimension must be divisible by number of heads' dim_head = default(dim_head, dim // heads) inner_dim = dim_head * heads self.fast_attention = FastAttention(dim_head, nb_features, causal = causal, generalized_attention = generalized_attention, kernel_fn = kernel_fn, qr_uniform_q = qr_uniform_q, no_projection = no_projection) self.heads = heads self.global_heads = heads - local_heads self.local_attn = LocalAttention(window_size = local_window_size, causal = causal, autopad = True, dropout = dropout, look_forward = int(not causal), rel_pos_emb_config = (dim_head, local_heads)) if local_heads > 0 else None #print (heads, nb_features, dim_head) #name_embedding = torch.zeros(110, heads, dim_head, dim_head) #self.name_embedding = nn.Parameter(name_embedding, requires_grad=True) self.to_q = nn.Linear(dim, inner_dim) self.to_k = nn.Linear(dim, inner_dim) self.to_v = nn.Linear(dim, inner_dim) self.to_out = nn.Linear(inner_dim, dim) self.dropout = nn.Dropout(dropout) @torch.no_grad() def redraw_projection_matrix(self): self.fast_attention.redraw_projection_matrix() #torch.nn.init.zeros_(self.name_embedding) #print (torch.sum(self.name_embedding)) def forward(self, x, context = None, mask = None, context_mask = None, name=None, inference=False, **kwargs): _, _, _, h, gh = *x.shape, self.heads, self.global_heads cross_attend = exists(context) context = default(context, x) context_mask = default(context_mask, mask) if not cross_attend else context_mask #print (torch.sum(self.name_embedding)) q, k, v = self.to_q(x), self.to_k(context), self.to_v(context) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) (q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v)) attn_outs = [] #print (name) #print (self.name_embedding[name].size()) if not empty(q): if exists(context_mask): global_mask = context_mask[:, None, :, None] v.masked_fill_(~global_mask, 0.) if cross_attend: pass #print (torch.sum(self.name_embedding)) #out = self.fast_attention(q,self.name_embedding[name],None) #print (torch.sum(self.name_embedding[...,-1:])) else: out = self.fast_attention(q, k, v) attn_outs.append(out) if not empty(lq): assert not cross_attend, 'local attention is not compatible with cross attention' out = self.local_attn(lq, lk, lv, input_mask = mask) attn_outs.append(out) out = torch.cat(attn_outs, dim = 1) out = rearrange(out, 'b h n d -> b n (h d)') out = self.to_out(out) return self.dropout(out)