import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import yaml from diffusion_onnx import GaussianDiffusion class DotDict(dict): def __getattr__(*args): val = dict.get(*args) return DotDict(val) if type(val) is dict else val __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def load_model_vocoder( model_path, device='cpu'): config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml') with open(config_file, "r") as config: args = yaml.safe_load(config) args = DotDict(args) # load model model = Unit2Mel( args.data.encoder_out_channels, args.model.n_spk, args.model.use_pitch_aug, 128, args.model.n_layers, args.model.n_chans, args.model.n_hidden, args.model.timesteps, args.model.k_step_max) print(' [Loading] ' + model_path) ckpt = torch.load(model_path, map_location=torch.device(device)) model.to(device) model.load_state_dict(ckpt['model']) model.eval() return model, args class Unit2Mel(nn.Module): def __init__( self, input_channel, n_spk, use_pitch_aug=False, out_dims=128, n_layers=20, n_chans=384, n_hidden=256, timesteps=1000, k_step_max=1000): super().__init__() self.unit_embed = nn.Linear(input_channel, n_hidden) self.f0_embed = nn.Linear(1, n_hidden) self.volume_embed = nn.Linear(1, n_hidden) if use_pitch_aug: self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False) else: self.aug_shift_embed = None self.n_spk = n_spk if n_spk is not None and n_spk > 1: self.spk_embed = nn.Embedding(n_spk, n_hidden) self.timesteps = timesteps if timesteps is not None else 1000 self.k_step_max = k_step_max if k_step_max is not None and k_step_max>0 and k_step_max 1: # [N, S] * [S, B, 1, H] g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1] g = g * self.speaker_map # [N, S, B, 1, H] g = torch.sum(g, dim=1) # [N, 1, B, 1, H] g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N] x = x.transpose(1, 2) + g return x else: return x.transpose(1, 2) def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None, gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True): ''' input: B x n_frames x n_unit return: dict of B x n_frames x feat ''' x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume) if self.n_spk is not None and self.n_spk > 1: if spk_mix_dict is not None: spk_embed_mix = torch.zeros((1,1,self.hidden_size)) for k, v in spk_mix_dict.items(): spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device) spk_embeddd = self.spk_embed(spk_id_torch) self.speaker_map[k] = spk_embeddd spk_embed_mix = spk_embed_mix + v * spk_embeddd x = x + spk_embed_mix else: x = x + self.spk_embed(spk_id - 1) self.speaker_map = self.speaker_map.unsqueeze(0) self.speaker_map = self.speaker_map.detach() return x.transpose(1, 2) def OnnxExport(self, project_name=None, init_noise=None, export_encoder=True, export_denoise=True, export_pred=True, export_after=True): hubert_hidden_size = 768 n_frames = 100 hubert = torch.randn((1, n_frames, hubert_hidden_size)) mel2ph = torch.arange(end=n_frames).unsqueeze(0).long() f0 = torch.randn((1, n_frames)) volume = torch.randn((1, n_frames)) spk_mix = [] spks = {} if self.n_spk is not None and self.n_spk > 1: for i in range(self.n_spk): spk_mix.append(1.0/float(self.n_spk)) spks.update({i:1.0/float(self.n_spk)}) spk_mix = torch.tensor(spk_mix) spk_mix = spk_mix.repeat(n_frames, 1) self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks) self.forward(hubert, mel2ph, f0, volume, spk_mix) if export_encoder: torch.onnx.export( self, (hubert, mel2ph, f0, volume, spk_mix), f"{project_name}_encoder.onnx", input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"], output_names=["mel_pred"], dynamic_axes={ "hubert": [1], "f0": [1], "volume": [1], "mel2ph": [1], "spk_mix": [0], }, opset_version=16 ) self.decoder.OnnxExport(project_name, init_noise=init_noise, export_denoise=export_denoise, export_pred=export_pred, export_after=export_after) def ExportOnnx(self, project_name=None): hubert_hidden_size = 768 n_frames = 100 hubert = torch.randn((1, n_frames, hubert_hidden_size)) mel2ph = torch.arange(end=n_frames).unsqueeze(0).long() f0 = torch.randn((1, n_frames)) volume = torch.randn((1, n_frames)) spk_mix = [] spks = {} if self.n_spk is not None and self.n_spk > 1: for i in range(self.n_spk): spk_mix.append(1.0/float(self.n_spk)) spks.update({i:1.0/float(self.n_spk)}) spk_mix = torch.tensor(spk_mix) self.orgforward(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks) self.forward(hubert, mel2ph, f0, volume, spk_mix) torch.onnx.export( self, (hubert, mel2ph, f0, volume, spk_mix), f"{project_name}_encoder.onnx", input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"], output_names=["mel_pred"], dynamic_axes={ "hubert": [1], "f0": [1], "volume": [1], "mel2ph": [1] }, opset_version=16 ) condition = torch.randn(1,self.decoder.n_hidden,n_frames) noise = torch.randn((1, 1, self.decoder.mel_bins, condition.shape[2]), dtype=torch.float32) pndm_speedup = torch.LongTensor([100]) K_steps = torch.LongTensor([1000]) self.decoder = torch.jit.script(self.decoder) self.decoder(condition, noise, pndm_speedup, K_steps) torch.onnx.export( self.decoder, (condition, noise, pndm_speedup, K_steps), f"{project_name}_diffusion.onnx", input_names=["condition", "noise", "pndm_speedup", "K_steps"], output_names=["mel"], dynamic_axes={ "condition": [2], "noise": [3], }, opset_version=16 ) if __name__ == "__main__": project_name = "dddsp" model_path = f'{project_name}/model_500000.pt' model, _ = load_model_vocoder(model_path) # 分开Diffusion导出(需要使用MoeSS/MoeVoiceStudio或者自己编写Pndm/Dpm采样) model.OnnxExport(project_name, export_encoder=True, export_denoise=True, export_pred=True, export_after=True) # 合并Diffusion导出(Encoder和Diffusion分开,直接将Encoder的结果和初始噪声输入Diffusion即可) # model.ExportOnnx(project_name)