import json import os import torch import yaml def traverse_dir( root_dir, extensions, amount=None, str_include=None, str_exclude=None, is_pure=False, is_sort=False, is_ext=True): file_list = [] cnt = 0 for root, _, files in os.walk(root_dir): for file in files: if any([file.endswith(f".{ext}") for ext in extensions]): # path mix_path = os.path.join(root, file) pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path # amount if (amount is not None) and (cnt == amount): if is_sort: file_list.sort() return file_list # check string if (str_include is not None) and (str_include not in pure_path): continue if (str_exclude is not None) and (str_exclude in pure_path): continue if not is_ext: ext = pure_path.split('.')[-1] pure_path = pure_path[:-(len(ext)+1)] file_list.append(pure_path) cnt += 1 if is_sort: file_list.sort() return file_list class DotDict(dict): def __getattr__(*args): val = dict.get(*args) return DotDict(val) if type(val) is dict else val __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def get_network_paras_amount(model_dict): info = dict() for model_name, model in model_dict.items(): # all_params = sum(p.numel() for p in model.parameters()) trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) info[model_name] = trainable_params return info def load_config(path_config): with open(path_config, "r") as config: args = yaml.safe_load(config) args = DotDict(args) # print(args) return args def save_config(path_config,config): config = dict(config) with open(path_config, "w") as f: yaml.dump(config, f) def to_json(path_params, path_json): params = torch.load(path_params, map_location=torch.device('cpu')) raw_state_dict = {} for k, v in params.items(): val = v.flatten().numpy().tolist() raw_state_dict[k] = val with open(path_json, 'w') as outfile: json.dump(raw_state_dict, outfile,indent= "\t") def convert_tensor_to_numpy(tensor, is_squeeze=True): if is_squeeze: tensor = tensor.squeeze() if tensor.requires_grad: tensor = tensor.detach() if tensor.is_cuda: tensor = tensor.cpu() return tensor.numpy() def load_model( expdir, model, optimizer, name='model', postfix='', device='cpu'): if postfix == '': postfix = '_' + postfix path = os.path.join(expdir, name+postfix) path_pt = traverse_dir(expdir, ['pt'], is_ext=False) global_step = 0 if len(path_pt) > 0: steps = [s[len(path):] for s in path_pt] maxstep = max([int(s) if s.isdigit() else 0 for s in steps]) if maxstep >= 0: path_pt = path+str(maxstep)+'.pt' else: path_pt = path+'best.pt' print(' [*] restoring model from', path_pt) ckpt = torch.load(path_pt, map_location=torch.device(device)) global_step = ckpt['global_step'] model.load_state_dict(ckpt['model'], strict=False) if ckpt.get("optimizer") is not None: optimizer.load_state_dict(ckpt['optimizer']) return global_step, model, optimizer