import whisper import gradio as gr import os from pytube import YouTube class WhisperModelUI(object): def __init__(self, ui_obj): self.name = "Whisper Model Processor UI" self.description = "This class is designed to build UI for our Whisper Model" self.ui_obj = ui_obj self.audio_files_list = ['No content'] self.whisper_model = whisper.model.Whisper self.video_store_path = 'data_files' def load_content(self, file_list): video_out_path = os.path.join(os.getcwd(), self.video_store_path) self.audio_files_list = [f for f in os.listdir(video_out_path) if os.path.isfile(video_out_path + "/" + f) and (f.endswith(".mp4") or f.endswith('mp3'))] return gr.Dropdown.update(choices=self.audio_files_list) def load_whisper_model(self, model_type): try: asr_model = whisper.load_model(model_type.lower()) self.whisper_model = asr_model status = "{} ロード完了".format(model_type) except: status = "ロードエラー {} model".format(model_type) return status, str(self.whisper_model) def load_youtube_video(self, video_url): video_out_path = os.path.join(os.getcwd(), self.video_store_path) yt = YouTube(video_url) local_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by( 'resolution').desc().first().download(video_out_path) return local_video_path def get_video_to_text(self, transcribe_or_decode, video_list_dropdown_file_name, language_detect, translate_or_transcribe ): debug_text = "" try: video_out_path = os.path.join(os.getcwd(), 'data_files') video_full_path = os.path.join(video_out_path, video_list_dropdown_file_name) if not os.path.isfile(video_full_path): video_text = "Selected video/audio is could not be located.." else: video_text = "Bad choice or result.." if transcribe_or_decode == 'Transcribe': video_text, debug_text = self.run_asr_with_transcribe(video_full_path, language_detect, translate_or_transcribe) elif transcribe_or_decode == 'Decode': audio = whisper.load_audio(video_full_path) video_text, debug_text = self.run_asr_with_decode(audio, language_detect, translate_or_transcribe) except: video_text = "Error processing audio..." return video_text, debug_text def run_asr_with_decode(self, audio, language_detect, translate_or_transcribe): debug_info = "None.." if 'encoder' not in dir(self.whisper_model) or 'decoder' not in dir(self.whisper_model): return "Model is not loaded, please load the model first", debug_info if self.whisper_model.encoder is None or self.whisper_model.decoder is None: return "Model is not loaded, please load the model first", debug_info try: # pad/trim it to fit 30 seconds audio = whisper.pad_or_trim(audio) # make log-Mel spectrogram and move to the same device as the model mel = whisper.log_mel_spectrogram(audio).to(self.whisper_model.device) if language_detect == 'Detect': # detect the spoken language _, probs = self.whisper_model.detect_language(mel) # print(f"Detected language: {max(probs, key=probs.get)}") # decode the audio # mps crash if fp16=False is not used task_type = 'transcribe' if translate_or_transcribe == 'Translate': task_type = 'translate' if language_detect != 'Detect': options = whisper.DecodingOptions(fp16=False, language=language_detect, task=task_type) else: options = whisper.DecodingOptions(fp16=False, task=task_type) result = whisper.decode(self.whisper_model, mel, options) result_text = result.text debug_info = str(result) except: result_text = "Error handing audio to text.." return result_text, debug_info def run_asr_with_transcribe(self, audio_path, language_detect, translate_or_transcribe): result_text = "Error..." debug_info = "None.." if 'encoder' not in dir(self.whisper_model) or 'decoder' not in dir(self.whisper_model): return "Model is not loaded, please load the model first", debug_info if self.whisper_model.encoder is None or self.whisper_model.decoder is None: return "Model is not loaded, please load the model first", debug_info task_type = 'transcribe' if translate_or_transcribe == 'Translate': task_type = 'translate' transcribe_options = dict(beam_size=5, best_of=5, fp16=False, task=task_type, without_timestamps=False) if language_detect != 'Detect': transcribe_options['language'] = language_detect transcription = self.whisper_model.transcribe(audio_path, **transcribe_options) if transcription is not None: result_text = transcription['text'] debug_info = str(transcription) return result_text, debug_info def create_whisper_ui(self): with self.ui_obj: gr.Markdown("AI翻訳・書き起こし") with gr.Tabs(): with gr.TabItem("YouTubeURLから"): with gr.Row(): with gr.Column(): asr_model_type = gr.Radio(['Tiny', 'Base', 'Small', 'Medium', 'Large'], label="モデルタイプ(精度)", value='Base' ) model_status_lbl = gr.Label(label="ローディングステータス") load_model_btn = gr.Button("モデルをロード") youtube_url = gr.Textbox(label="YouTube URL", # value="https://www.youtube.com/watch?v=Y2nHd7El8iw" value="" ) youtube_video = gr.Video(label="ビデオ") get_video_btn = gr.Button("YouTubeURLをロード") with gr.Column(): video_list_dropdown = gr.Dropdown(self.audio_files_list, label="保存済みビデオ") load_video_list_btn = gr.Button("全てのビデオをロード") transcribe_or_decode = gr.Radio(['Transcribe', 'Decode'], label="オプション(Transcribe = 書き起こし)", value='Transcribe' ) language_detect = gr.Dropdown(['Detect', 'English', 'Hindi', 'Japanese'], label="自動検知か言語を選択") translate_or_transcribe = gr.Dropdown(['Transcribe', 'Translate'], label="Translate(翻訳)か Transcribe(書き起こし)を選択") get_video_txt_btn = gr.Button("変換開始!") video_text = gr.Textbox(label="テキスト", lines=10) with gr.TabItem("デバッグ情報"): with gr.Row(): with gr.Column(): debug_text = gr.Textbox(label="Debug Details", lines=20) load_model_btn.click( self.load_whisper_model, [ asr_model_type ], [ model_status_lbl, debug_text ] ) get_video_btn.click( self.load_youtube_video, [ youtube_url ], [ youtube_video ] ) load_video_list_btn.click( self.load_content, [ video_list_dropdown ], [ video_list_dropdown ] ) get_video_txt_btn.click( self.get_video_to_text, [ transcribe_or_decode, video_list_dropdown, language_detect, translate_or_transcribe ], [ video_text, debug_text ] ) def launch_ui(self): self.ui_obj.launch(debug=True)