from langchain_openai.chat_models import ChatOpenAI from langchain_community.tools.tavily_search import TavilySearchResults from langchain.tools.render import format_tool_to_openai_function from langgraph.prebuilt import ToolExecutor,ToolInvocation from typing import TypedDict, Annotated, Sequence import operator from langchain_core.messages import BaseMessage,FunctionMessage,HumanMessage,AIMessage from langchain_core.prompts import ChatPromptTemplate from langchain.tools import ShellTool,tool import json import os import gradio as gr os.environ["LANGCHAIN_TRACING_V2"] ="True" os.environ["LANGCHAIN_API_KEY"]="ls__54e16f70b2b0455aad0f2cbf47777d30" os.environ["OPENAI_API_KEY"]="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" # os.environ["OPENAI_API_KEY"]="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" os.environ["LANGCHAIN_ENDPOINT"]="https://api.smith.langchain.com" os.environ["LANGCHAIN_PROJECT"]="default" os.environ['TAVILY_API_KEY'] = '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' class AgentState(TypedDict): messages: Annotated[Sequence[BaseMessage], operator.add] model = ChatOpenAI(model="gpt-3.5-turbo-1106",api_key="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") # model = ChatOpenAI(model="Qwen/Qwen1.5-72B-Chat",api_key="20a79668d6113e99b35fcd541c65bfeaec497b8262c111bd328ef5f1ad8c6335",base_url="https://api.together.xyz/v1") prompt = ChatPromptTemplate.from_messages([ ("system", "你是一个餐厅经理,你叫唐僧,能为顾客提供服务,你有三个员工,分别是:厨师八戒,侍者沙僧,收银悟空,你需要根据顾客的需求,分别向员工下达指令,你和员工的对话也要同步显示给顾客,当收银结束后,服务全部结束。除了顾客关于食物的问题,其他问题你要委婉的拒绝回答"), ("human", "{input}") ]) @tool(return_direct=True) def chushi(query: str)->str: '''你是餐厅厨师八戒,能根据经理的指令,做出一道菜''' input={"input":query}, return "菜已做好" @tool def shizhe(query: str)->str: '''你是餐厅侍者沙僧,能根据经理的指令,把菜端到顾客面前''' input={"input":query} return "菜已送到" @tool def shouyin(query: str)->str: '''你是餐厅收银悟空,能根据经理的指令,为顾客结账''' input={"input":query} return "结账完成,欢迎下次光临" tools=[chushi,shizhe,shouyin] functions = [format_tool_to_openai_function(t) for t in tools] model = model.bind_functions(functions) # model= model.bind(tools=tools) tool_executor = ToolExecutor(tools) def should_continue(state): messages = state['messages'] last_message = messages[-1] # If there is no function call, then we finish if "function_call" not in last_message.additional_kwargs: return "end" # Otherwise if there is, we continue else: return "continue" # Define the function that calls the model def call_model(state): messages = state['messages'] response = model.invoke(messages) # We return a list, because this will get added to the existing list return {"messages": [response]} # Define the function to execute tools def call_tool(state): messages = state['messages'] # Based on the continue condition # we know the last message involves a function call last_message = messages[-1] # We construct an ToolInvocation from the function_call action = ToolInvocation( tool=last_message.additional_kwargs["function_call"]["name"], tool_input=json.loads(last_message.additional_kwargs["function_call"]["arguments"]), ) # We call the tool_executor and get back a response response = tool_executor.invoke(action) # We use the response to create a FunctionMessage function_message = FunctionMessage(content=str(response), name=action.tool) # We return a list, because this will get added to the existing list return {"messages": [function_message]} from langgraph.graph import StateGraph, END # Define a new graph workflow = StateGraph(AgentState) # Define the two nodes we will cycle between workflow.add_node("agent", call_model) workflow.add_node("action", call_tool) # Set the entrypoint as `agent` # This means that this node is the first one called workflow.set_entry_point("agent") # We now add a conditional edge workflow.add_conditional_edges( # First, we define the start node. We use `agent`. # This means these are the edges taken after the `agent` node is called. "agent", # Next, we pass in the function that will determine which node is called next. should_continue, # Finally we pass in a mapping. # The keys are strings, and the values are other nodes. # END is a special node marking that the graph should finish. # What will happen is we will call `should_continue`, and then the output of that # will be matched against the keys in this mapping. # Based on which one it matches, that node will then be called. { # If `tools`, then we call the tool node. "continue": "action", # Otherwise we finish. "end": END } ) # We now add a normal edge from `tools` to `agent`. # This means that after `tools` is called, `agent` node is called next. workflow.add_edge('action', 'agent') # Finally, we compile it! # This compiles it into a LangChain Runnable, # meaning you can use it as you would any other runnable app = workflow.compile() async def predict(message,history): # history_langchain_format = [] # for human, ai in history: # history_langchain_format.append(HumanMessage(content=human)) # history_langchain_format.append(AIMessage(content=ai)) # history_langchain_format.append(HumanMessage(content=message)) # que={"messages": history_langchain_format} # que={"messages": [HumanMessage(content=message)]} que={"messages":[prompt.format(input=message)]} res=app.invoke(que) if res: response=(res["messages"][-1].content) return(response) else:print("不好意思,出了一个小问题,请联系我的微信:13603634456") demo = gr.ChatInterface(fn=predict, title="西游餐厅",description="西游餐厅开张了,我是经理唐僧,欢迎光临,您有什么需求,可以直接问我哦!",) demo.launch()