##### games.,py ##### # Import modules from shiny import * import shinyswatch #import plotly.express as px from shinywidgets import output_widget, render_widget import pandas as pd from configure import base_url import math import datetime import datasets from datasets import load_dataset import numpy as np import matplotlib from matplotlib.ticker import MaxNLocator from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt from scipy.stats import gaussian_kde import seaborn as sns ### Import Datasets dataset = load_dataset('nesticot/mlb_data', data_files=['mlb_pitch_data_2023.csv', 'mlb_pitch_data_2022.csv']) dataset_train = dataset['train'] df_2023 = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True) # Paths to data ### Normalize Hit Locations df_2023['hit_x'] = df_2023['hit_x'] - 126#df_2023['hit_x'].median() df_2023['hit_y'] = -df_2023['hit_y']+204.5#df_2023['hit_y'].quantile(0.9999) df_2023['hit_x_og'] = df_2023['hit_x'] df_2023.loc[df_2023['batter_hand'] == 'R','hit_x'] = -1*df_2023.loc[df_2023['batter_hand'] == 'R','hit_x'] ### Calculate Horizontal Launch Angles df_2023['h_la'] = np.arctan(df_2023['hit_x'] / df_2023['hit_y'])*180/np.pi conditions_ss = [ (df_2023['h_la']<-16+5/6), (df_2023['h_la']<16+5/6)&(df_2023['h_la']>=-16+5/6), (df_2023['h_la']>=16+5/6) ] choices_ss = ['Oppo','Straight','Pull'] df_2023['traj'] = np.select(conditions_ss, choices_ss, default=np.nan) df_2023['bip'] = [1 if x > 0 else np.nan for x in df_2023['launch_speed']] conditions_woba = [ (df_2023['event_type']=='walk'), (df_2023['event_type']=='hit_by_pitch'), (df_2023['event_type']=='single'), (df_2023['event_type']=='double'), (df_2023['event_type']=='triple'), (df_2023['event_type']=='home_run'), ] choices_woba = [1, 1, 1, 2, 3, 4] choices_woba_train = [1, 1, 1, 2, 3, 4] df_2023['woba_train'] = np.select(conditions_woba, choices_woba_train, default=0) conditions = [ (df_2023['launch_speed'].isna()), (df_2023['launch_speed']*1.5 - df_2023['launch_angle'] >= 117 ) & (df_2023['launch_speed'] + df_2023['launch_angle'] >= 124) & (df_2023['launch_speed'] > 98) & (df_2023['launch_angle'] >= 8) & (df_2023['launch_angle'] <= 50) ] choices = [False,True] df_2023['barrel'] = np.select(conditions, choices, default=np.nan) test_df = df_2023.sort_values(by='batter_name').drop_duplicates(subset='batter_id').reset_index(drop=True)[['batter_id','batter_name']]#['pitcher'].to_dict() test_df = test_df.set_index('batter_id') #test_df = test_df[test_df.pitcher == 'Chris Bassitt'].append(test_df[test_df.pitcher != 'Chris Bassitt']) batter_dict = test_df['batter_name'].to_dict() colour_palette = ['#FFB000','#648FFF','#785EF0', '#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED'] angle_ev_list_df = pd.read_csv('angle_ev_list_df.csv') ev_ranges = list(np.arange(97.5,130,0.1)) angle_ranges = list(range(8,51)) df_2023_bip = df_2023[~df_2023['bip'].isnull()].dropna(subset=['h_la','launch_angle']) df_2023_bip['h_la'] = df_2023_bip['h_la'].round(0) df_2023_bip['season'] = df_2023_bip['game_date'].str[0:4].astype(int) #df_2023_bip = df_2023[~df_2023['bip'].isnull()].dropna(subset=['launch_angle','bip']) df_2023_bip_train = df_2023_bip[df_2023_bip['season'] == 2023] features = ['launch_angle','launch_speed','h_la'] target = ['woba_train'] df_2023_bip_train = df_2023_bip_train.dropna(subset=features) import joblib # # Dump the model to a file named 'model.joblib' model = joblib.load('xtb_model.joblib') df_2023_bip_train['y_pred'] = [sum(x) for x in model.predict_proba(df_2023_bip_train[features]) * ([0,1,2,3,4])] # df_2023_bip_train['y_pred_noh'] = [sum(x) for x in model_noh.predict_proba(df_2023_bip_train[['launch_angle','launch_speed']]) * ([0,0.887,1.253,1.583,2.027])] df_2023_output = df_2023_bip_train.groupby(['batter_id','batter_name']).agg( bip = ('y_pred','count'), y_pred = ('y_pred','sum'), xslgcon = ('y_pred','mean'), launch_speed = ('launch_speed','mean'), launch_angle_std = ('launch_angle','median'), h_la_std = ('h_la','mean')) df_2023_output_copy = df_2023_output.copy() # df_2023_output = df_2023_output[df_2023_output['bip'] > 100] # df_2023_output[df_2023_output['bip'] > 100].sort_values(by='h_la_std',ascending=True).head(20) import pandas as pd import numpy as np # Create grid coordinates x = np.arange(30, 121,1 ) y = np.arange(-30, 61,1 ) z = np.arange(-45, 46,1 ) # Create a meshgrid X, Y, Z = np.meshgrid(x, y, z, indexing='ij') # Flatten the meshgrid to get x and y coordinates x_flat = X.flatten() y_flat = Y.flatten() z_flat = Z.flatten() # Create a DataFrame df = pd.DataFrame({'launch_speed': x_flat, 'launch_angle': y_flat,'h_la':z_flat}) df['y_pred'] = [sum(x) for x in model.predict_proba(df[features]) * ([0,1,2,3,4])] import matplotlib colour_palette = ['#FFB000','#648FFF','#785EF0', '#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED'] cmap_hue = matplotlib.colors.LinearSegmentedColormap.from_list("", [colour_palette[1],'#ffffff',colour_palette[0]]) cmap_hue2 = matplotlib.colors.LinearSegmentedColormap.from_list("",['#ffffff',colour_palette[0]]) from matplotlib.pyplot import text import inflect from scipy.stats import percentileofscore p = inflect.engine() batter_dict = df_2023_bip.sort_values('batter_name').set_index('batter_id')['batter_name'].to_dict() # def server(input: Inputs, output: Outputs, session: Session): #if input.my_tabs() == '2023 vs MLB': #return # #if input.my_tabs() == 'Damage Hex': # ui.insert_ui( # ui.input_numeric("quant", # "Select Percentile", # value=50, # min=0,max=100), # selector="#go", # where="beforeBegin", # ), # ui.insert_ui( # ui.input_numeric("rolling_window", # "Select Rolling Window", # value=50, # min=1), # selector="#go", # where="beforeBegin", # ) #return # ui.insert_ui( # ui.input_numeric("quant", # "Select Percentile", # value=50, # min=0,max=100), # ), # ui.insert_ui( # ui.input_numeric("rolling_window", # "Select Rolling Window", # value=50, # min=1), # where="beforeEnd", # ) # return # if input.my_tabs() == 'Damage Roll': # return ui.panel_sidebar( # ui.input_select("batter_id", # "Select Batter2", # batter_dict, # width=1, # size=1, # selectize=True), # ui.input_action_button("go", "Generate",class_="btn-primary", # )), # if input.my_tabs() == 'EV vs LA': # return ui.panel_sidebar( # ui.input_select("batter_id", # "Select Batter3", # batter_dict, # width=1, # size=1, # selectize=True), # ui.input_action_button("go", "Generate",class_="btn-primary", # )), def server(input,output,session): @reactive.Effect @reactive.event(input.update_ui) def test(): if input.my_tabs() == 'Damage Hex': ui.remove_ui(selector="div:has(> #quant)") ui.remove_ui(selector="div:has(> #rolling_window)") ui.remove_ui(selector="div:has(> #plot_id)") ui.insert_ui( ui.input_numeric("quant", "Select Percentile", value=50, min=0,max=100), selector="#go", where="beforeBegin") print(input.quant()) if input.my_tabs() == 'Damage Roll': ui.remove_ui(selector="div:has(> #rolling_window)") ui.remove_ui(selector="div:has(> #quant)") ui.remove_ui(selector="div:has(> #plot_id)") ui.insert_ui( ui.input_numeric("rolling_window", "Select Rolling Window", value=50, min=1), selector="#go", where="beforeBegin", ) # if input.my_tabs() == 'EV vs LA': # ui.remove_ui(selector="div:has(> #rolling_window)") # ui.remove_ui(selector="div:has(> #quant)") # ui.remove_ui(selector="div:has(> #plot_id)") # ui.insert_ui( # ui.input_select("plot_id", "Select Plot",{'scatter':'Scatter Plot','dist':'Distribution Plot'}), # selector="#go", # where="beforeBegin", # ) @output @render.plot(alt="plot") @reactive.event(input.go, ignore_none=False) def plot(): batter_id_select = int(input.batter_id()) df_batter_2023 = df_2023_bip.loc[(df_2023_bip['batter_id'] == batter_id_select)&(df_2023_bip['season']==2023)] df_batter_2022 = df_2023_bip.loc[(df_2023_bip['batter_id'] == batter_id_select)&(df_2023_bip['season']==2022)] df_non_batter_2023 = df_2023_bip.loc[(df_2023_bip['batter_id'] != batter_id_select)&(df_2023_bip['season']==2023)] df_non_batter_2022 = df_2023_bip.loc[(df_2023_bip['batter_id'] != batter_id_select)&(df_2023_bip['season']==2022)] traj_df = df_batter_2023.groupby(['traj'])['launch_speed'].count() / len(df_batter_2023) trajectory_df = df_batter_2023.groupby(['trajectory'])['launch_speed'].count() / len(df_batter_2023)#.loc['Oppo'] colour_palette = ['#FFB000','#648FFF','#785EF0', '#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED'] fig = plt.figure(figsize=(10, 10)) # Create a 2x2 grid of subplots using GridSpec gs = GridSpec(3, 3, width_ratios=[0.1,0.8,0.1], height_ratios=[0.1,0.8,0.1]) # ax00 = fig.add_subplot(gs[0, 0]) ax01 = fig.add_subplot(gs[0, :]) # Subplot at the top-right position # ax02 = fig.add_subplot(gs[0, 2]) # Subplot spanning the entire bottom row ax10 = fig.add_subplot(gs[1, 0]) ax11 = fig.add_subplot(gs[1, 1]) # Subplot at the top-right position ax12 = fig.add_subplot(gs[1, 2]) # ax20 = fig.add_subplot(gs[2, 0]) ax21 = fig.add_subplot(gs[2, :]) # Subplot at the top-right position # ax22 = fig.add_subplot(gs[2, 2]) initial_position = ax12.get_position() # Change the size of the axis # new_width = 0.06 # Set your desired width # new_height = 0.4 # Set your desired height # new_position = [initial_position.x0-0.01, initial_position.y0+0.065, new_width, new_height] # ax12.set_position(new_position) cmap_hue = matplotlib.colors.LinearSegmentedColormap.from_list("", [colour_palette[1],'#ffffff',colour_palette[0]]) # Generate two sets of two-dimensional data # data1 = np.random.multivariate_normal([0, 0], [[1, 0.5], [0.5, 1]], 1000) # data2 = np.random.multivariate_normal([3, 3], [[1, -0.5], [-0.5, 1]], 1000) bat_hand = df_batter_2023.groupby('batter_hand')['launch_speed'].count().sort_values(ascending=False).index[0] bat_hand_value = 1 if bat_hand == 'R': bat_hand_value = -1 kde1_df = df_batter_2023[['h_la','launch_angle']] kde1_df['h_la'] = kde1_df['h_la'] * bat_hand_value kde2_df = df_non_batter_2023[['h_la','launch_angle']].sample(n=50000, random_state=42) kde2_df['h_la'] = kde2_df['h_la'] * bat_hand_value # Calculate 2D KDE for each dataset kde1 = gaussian_kde(kde1_df.values.T) kde2 = gaussian_kde(kde2_df.values.T) # Generate a grid of points for evaluation x, y = np.meshgrid(np.arange(-45, 46,1 ), np.arange(-30, 61,1 )) positions = np.vstack([x.ravel(), y.ravel()]) # Evaluate the KDEs on the grid kde1_values = np.reshape(kde1(positions).T, x.shape) kde2_values = np.reshape(kde2(positions).T, x.shape) # Subtract one KDE from the other result_kde_values = kde1_values - kde2_values # Normalize the array to the range [0, 1] # result_kde_values = (result_kde_values - np.min(result_kde_values)) / (np.max(result_kde_values) - np.min(result_kde_values)) result_kde_values = (result_kde_values - np.mean(result_kde_values)) / (np.std(result_kde_values)) result_kde_values = np.clip(result_kde_values, -3, 3) # # Plot the original KDEs # plt.contourf(x, y, kde1_values, cmap='Blues', alpha=0.5, levels=20) # plt.contourf(x, y, kde2_values, cmap='Reds', alpha=0.5, levels=20) # Plot the subtracted KDE # Set the number of levels and midrange value # Set the number of levels and midrange value num_levels = 14 midrange_value = 0 # Create a filled contour plot with specified levels levels = np.linspace(-3, 3, num_levels) batter_plot = ax11.contourf(x, y, result_kde_values, cmap=cmap_hue, levels=levels, vmin=-3, vmax=3) ax11.hlines(y=10,xmin=45,xmax=-45,color=colour_palette[3],linewidth=1) ax11.hlines(y=25,xmin=45,xmax=-45,color=colour_palette[3],linewidth=1) ax11.hlines(y=50,xmin=45,xmax=-45,color=colour_palette[3],linewidth=1) ax11.vlines(x=-15,ymin=-30,ymax=60,color=colour_palette[3],linewidth=1) ax11.vlines(x=15,ymin=-30,ymax=60,color=colour_palette[3],linewidth=1) #ax11.axis('square') #ax11.axis('off') #ax.hlines(y=10,xmin=-45,xmax=-45) # Add labels and legend #plt.xlabel('X-axis') #plt.ylabel('Y-axis') #ax.plot('equal') #plt.gca().set_aspect('equal') #Choose a mappable (can be any plot or image) ax12.set_ylim(0,1) cbar = plt.colorbar(batter_plot, cax=ax12, orientation='vertical',shrink=1) cbar.set_ticks([]) # Set the colorbar to have 13 levels cbar_locator = MaxNLocator(nbins=13) cbar.locator = cbar_locator cbar.update_ticks() #cbar.set_clim(vmin=-3, vmax=) # Set ticks and tick labels # cbar.set_ticks(np.linspace(-3, 3, 13)) # cbar.set_ticklabels(np.linspace(0, 3, 13)) cbar.set_ticks([]) ax10.text(s=f"Pop Up\n({trajectory_df.loc['popup']:.1%})", x=1, y=0.95,va='center',ha='right',fontsize=16) # Choose a mappable (can be any plot or image) ax10.text(s=f"Fly Ball\n({trajectory_df.loc['fly_ball']:.1%})", x=1, y=0.75,va='center',ha='right',fontsize=16) ax10.text(s=f"Line\nDrive\n({trajectory_df.loc['line_drive']:.1%})", x=1, y=0.53,va='center',ha='right',fontsize=16) ax10.text(s=f"Ground\nBall\n({trajectory_df.loc['ground_ball']:.1%})", x=1, y=0.23,va='center',ha='right',fontsize=16) #ax12.axis(True) # Set equal aspect ratio for the contour plot if bat_hand == 'R': ax21.text(s=f"Pull\n({traj_df.loc['Pull']:.1%})", x=0.2+1/16*0.8, y=1,va='top',ha='center',fontsize=16) ax21.text(s=f"Straight\n({traj_df.loc['Straight']:.1%})", x=0.5, y=1,va='top',ha='center',fontsize=16) ax21.text(s=f"Oppo\n({traj_df.loc['Oppo']:.1%})", x=0.8-1/16*0.8, y=1,va='top',ha='center',fontsize=16) else: ax21.text(s=f"Pull\n({traj_df.loc['Pull']:.1%})", x=0.8-1/16*0.8, y=1,va='top',ha='center',fontsize=16) ax21.text(s=f"Straight\n({traj_df.loc['Straight']:.1%})", x=0.5, y=1,va='top',ha='center',fontsize=16) ax21.text(s=f"Oppo\n({traj_df.loc['Oppo']:.1%})", x=0.2+1/16*0.8, y=1,va='top',ha='center',fontsize=16) # Define the initial position of the axis # Customize colorbar properties # cbar = fig.colorbar(orientation='vertical', pad=0.1,ax=ax12) #cbar.set_label('Difference', rotation=270, labelpad=15) # Show the plot # ax21.text(0.0, 0., "By: Thomas Nestico\n @TJStats",ha='left', va='bottom',fontsize=12) # ax21.text(1, 0., "Data: MLB",ha='right', va='bottom',fontsize=12) # ax21.text(0.5, 0., "Inspired by @blandalytics",ha='center', va='bottom',fontsize=12) # ax00.axis('off') ax01.axis('off') # ax02.axis('off') ax10.axis('off') #ax11.axis('off') #ax12.axis('off') # ax20.axis('off') ax21.axis('off') # ax22.axis('off') ax21.text(0.0, 0., "By: Thomas Nestico\n @TJStats",ha='left', va='bottom',fontsize=12) ax21.text(0.98, 0., "Data: MLB",ha='right', va='bottom',fontsize=12) ax21.text(0.5, 0., "Inspired by @blandalytics",ha='center', va='bottom',fontsize=12) ax11.set_xticks([]) ax11.set_yticks([]) # ax12.text(s='Same',x=np.mean([x for x in ax12.get_xlim()]),y=np.median([x for x in ax12.get_ylim()]), # va='center',ha='center',fontsize=12) # ax12.text(s='More\nOften',x=0.5,y=0.74, # va='top',ha='center',fontsize=12) ax12.text(s='+3σ',x=0.5,y=3-1/14*3, va='center',ha='center',fontsize=12) ax12.text(s='+2σ',x=0.5,y=2-1/14*2, va='center',ha='center',fontsize=12) ax12.text(s='+1σ',x=0.5,y=1-1/14*1, va='center',ha='center',fontsize=12) ax12.text(s='±0σ',x=0.5,y=0, va='center',ha='center',fontsize=12) ax12.text(s='-1σ',x=0.5,y=-1-1/14*-1, va='center',ha='center',fontsize=12) ax12.text(s='-2σ',x=0.5,y=-2-1/14*-2, va='center',ha='center',fontsize=12) ax12.text(s='-3σ',x=0.5,y=-3-1/14*-3, va='center',ha='center',fontsize=12) # # ax12.text(s='Less\nOften',x=0.5,y=0.26, # # va='bottom',ha='center',fontsize=12) ax01.text(s=f"{df_batter_2023['batter_name'].values[0]}'s 2023 Batted Ball Tendencies", x=0.5, y=0.8,va='top',ha='center',fontsize=20) ax01.text(s=f"(Compared to rest of MLB)", x=0.5, y=0.3,va='top',ha='center',fontsize=16) #plt.show() @output @render.plot(alt="hex_plot") @reactive.event(input.go, ignore_none=False) def hex_plot(): if input.batter_id() is "": fig = plt.figure(figsize=(12, 12)) fig.text(s='Please Select a Batter',x=0.5,y=0.5) return batter_select_id = int(input.batter_id()) # batter_select_name = 'Edouard Julien' quant = int(input.quant())/100 df_batter_og = df_2023_bip_train[df_2023_bip_train['batter_id']==batter_select_id] # df_batter_og = df_2023_bip_train[df_2023_bip_train['batter_name']==batter_select_name] df_batter = df_batter_og[df_batter_og['launch_speed'] >= df_batter_og['launch_speed'].quantile(quant)] # df_batter_best_speed = df_batter['launch_speed'].mean().round() # df_bip_league = df_2023_bip_train[df_2023_bip_train['launch_speed'] >= df_2023_bip_train['launch_speed'].quantile(quant)] import pandas as pd import numpy as np # Create grid coordinates #x = np.arange(30, 121,1 ) y_b = np.arange(df_batter['launch_angle'].median()-df_batter['launch_angle'].std(), df_batter['launch_angle'].median()+df_batter['launch_angle'].std(),1 ) z_b = np.arange(df_batter['h_la'].median()-df_batter['h_la'].std(), df_batter['h_la'].median()+df_batter['h_la'].std(),1 ) # Create a meshgrid Y_b, Z_b = np.meshgrid( y_b,z_b, indexing='ij') # Flatten the meshgrid to get x and y coordinates y_flat_b = Y_b.flatten() z_flat_b = Z_b.flatten() # Create a DataFrame df_batter_base = pd.DataFrame({'launch_angle': y_flat_b,'h_la':z_flat_b,'c':[0]*len(y_flat_b)}) # df_batter_base['y_pred'] = [sum(x) for x in model.predict_proba(df_batter_base[features]) * ([0,1,2,3,4])] from matplotlib.gridspec import GridSpec # fig,ax = plt.subplots(figsize=(12, 12),dpi=150) fig = plt.figure(figsize=(12,12)) gs = GridSpec(4, 3, height_ratios=[0.5,10,1.5,0.2], width_ratios=[0.05,0.9,0.05]) axheader = fig.add_subplot(gs[0, :]) ax10 = fig.add_subplot(gs[1, 0]) ax = fig.add_subplot(gs[1, 1]) # Subplot at the top-right position ax12 = fig.add_subplot(gs[1, 2]) ax2_ = fig.add_subplot(gs[2, :]) axfooter1 = fig.add_subplot(gs[-1, :]) axheader.axis('off') ax10.axis('off') ax12.axis('off') ax2_.axis('off') axfooter1.axis('off') extents = [-45,45,-30,60] def hexLines(a=None,i=None,off=[0,0]): '''regular hexagon segment lines as `(xy1,xy2)` in clockwise order with points in line sorted top to bottom for irregular hexagon pass both `a` (vertical) and `i` (horizontal)''' if a is None: a = 2 / np.sqrt(3) * i; if i is None: i = np.sqrt(3) / 2 * a; h = a / 2 xy = np.array([ [ [ 0, a], [ i, h] ], [ [ i, h], [ i,-h] ], [ [ i,-h], [ 0,-a] ], [ [-i,-h], [ 0,-a] ], #flipped [ [-i, h], [-i,-h] ], #flipped [ [ 0, a], [-i, h] ] #flipped ]) return xy+off; h = ax.hexbin(x=df_batter_base['h_la'], y=df_batter_base['launch_angle'], gridsize=25, edgecolors='k', extent=extents,mincnt=1,lw=2,zorder=-3,) # cfg = {**cfg,'vmin':h.get_clim()[0], 'vmax':h.get_clim()[1]} # plt.hexbin( ec="black" ,lw=6,zorder=4,mincnt=2,**cfg,alpha=0.1) # plt.hexbin( ec="#ffffff",lw=1,zorder=5,mincnt=2,**cfg,alpha=0.1) ax.hexbin(x=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['h_la'], y=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['launch_angle'], C=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['y_pred'], gridsize=25, vmin=0, vmax=4, cmap=cmap_hue2, extent=extents,zorder=-3) # Get the counts and centers of the hexagons counts = ax.hexbin(x=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['h_la'], y=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['launch_angle'], C=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['y_pred'], gridsize=25, vmin=0, vmax=4, cmap=cmap_hue2, extent=extents).get_array() bin_centers = ax.hexbin(x=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['h_la'], y=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['launch_angle'], C=df[(df['launch_angle']>=-30)&(df['launch_angle']<=60)&(df['launch_speed']>=df_batter['launch_speed'].median())&(df['launch_speed']<=df_batter['launch_speed'].max())]['y_pred'], gridsize=25, vmin=0, vmax=4, cmap=cmap_hue2, extent=extents).get_offsets() # Add text with the values of "C" to each hexagon for count, (x, y) in zip(counts, bin_centers): if count >= 1: ax.text(x, y, f'{count:.1f}', color='black', ha='center', va='center',fontsize=7) #get hexagon centers that should be highlighted verts = h.get_offsets() cnts = h.get_array() highl = verts[cnts > .5*cnts.max()] #create hexagon lines a = ((verts[0,1]-verts[1,1])/3).round(6) i = ((verts[1:,0]-verts[:-1,0])/2).round(6) i = i[i>0][0] lines = np.concatenate([hexLines(a,i,off) for off in highl]) #select contour lines and draw uls,c = np.unique(lines.round(4),axis=0,return_counts=True) for l in uls[c==1]: ax.plot(*l.transpose(),'w-',lw=2,scalex=False,scaley=False,color=colour_palette[1],zorder=100) # Plot filled hexagons for hc in highl: hx = hc[0] + np.array([0, i, i, 0, -i, -i]) hy = hc[1] + np.array([a, a/2, -a/2, -a, -a/2, a/2]) ax.fill(hx, hy, color=colour_palette[1], alpha=0.15, edgecolor=None) # Adjust color and alpha as needed # # Create grid coordinates # #x = np.arange(30, 121,1 ) # y_b = np.arange(df_bip_league['launch_angle'].median()-df_bip_league['launch_angle'].std(), # df_bip_league['launch_angle'].median()+df_bip_league['launch_angle'].std(),1 ) # z_b = np.arange(df_bip_league['h_la'].median()-df_bip_league['h_la'].std(), # df_bip_league['h_la'].median()+df_bip_league['h_la'].std(),1 ) # # Create a meshgrid # Y_b, Z_b = np.meshgrid( y_b,z_b, indexing='ij') # # Flatten the meshgrid to get x and y coordinates # y_flat_b = Y_b.flatten() # z_flat_b = Z_b.flatten() # # Create a DataFrame # df_league_base = pd.DataFrame({'launch_angle': y_flat_b,'h_la':z_flat_b,'c':[0]*len(y_flat_b)}) # h_league = ax.hexbin(x=df_league_base['h_la'], # y=df_league_base['launch_angle'], # gridsize=25, # edgecolors=colour_palette[1], # extent=extents,mincnt=1,lw=2,zorder=-3,) # #get hexagon centers that should be highlighted # verts = h_league.get_offsets() # cnts = h_league.get_array() # highl = verts[cnts > .5*cnts.max()] # #create hexagon lines # a = ((verts[0,1]-verts[1,1])/3).round(6) # i = ((verts[1:,0]-verts[:-1,0])/2).round(6) # i = i[i>0][0] # lines = np.concatenate([hexLines(a,i,off) for off in highl]) # #select contour lines and draw # uls,c = np.unique(lines.round(4),axis=0,return_counts=True) # for l in uls[c==1]: ax.plot(*l.transpose(),'w-',lw=2,scalex=False,scaley=False,color=colour_palette[3],zorder=99) axheader.text(s=f"{df_batter['batter_name'].values[0]} - {int(quant*100)}th% EV and Greater Batted Ball Tendencies",x=0.5,y=0.2,fontsize=20,ha='center',va='bottom') axheader.text(s=f"2023 Season",x=0.5,y=-0.1,fontsize=14,ha='center',va='top') ax.set_xlabel(f"Horizontal Spray Angle (°)",fontsize=12) ax.set_ylabel(f"Vertical Launch Angle (°)",fontsize=12) ax2_.text(x=0.5, y=0.0, s="Notes:\n" \ f"- {int(quant*100)}th% EV and Greater BBE is defined as a batter's top {100 - int(quant*100)}% hardest hit BBE\n" \ f"- Colour Scale and Number Labels Represents the Expected Total Bases for a batter's range of Best Speeds\n" \ f"- Shaded Area Represents the 2-D Region bounded by ±1σ Launch Angle and Horizontal Spray Angle on batter's Best Speed BBE\n"\ f"- {df_batter['batter_name'].values[0]} {int(quant*100)}th% EV and Greater BBE Range from {df_batter['launch_speed'].min():.0f} to {df_batter['launch_speed'].max():.0f} mph ({len(df_batter)} BBE)\n"\ f"- Positive Horizontal Spray Angle Represents a BBE hit in same direction as batter handedness (i.e. Pulled)" , fontsize=11, fontstyle='oblique', va='bottom', ha='center', bbox=dict(facecolor='white', edgecolor='black'),ma='left') axfooter1.text(0.05, 0.5, "By: Thomas Nestico\n @TJStats",ha='left', va='bottom',fontsize=12) axfooter1.text(0.95, 0.5, "Data: MLB",ha='right', va='bottom',fontsize=12) if df_batter['batter_hand'].values[0] == 'R': ax.invert_xaxis() ax.grid(False) ax.axis('equal') # Adjusting subplot to center it within the figure fig.subplots_adjust(left=0.01, right=0.99, top=0.975, bottom=0.025) #ax.text(f"Vertical Spray Angle (°)") @output @render.plot(alt="roll_plot") @reactive.event(input.go, ignore_none=False) def roll_plot(): # player_select = 'Nolan Gorman' # player_select_full =player_select if input.batter_id() is "": fig = plt.figure(figsize=(12, 12)) fig.text(s='Please Select a Batter',x=0.5,y=0.5) return # df_will = df_model_2023[df_model_2023.batter_name == player_select].sort_values(by=['game_date','start_time']) # df_will = df_will[df_will['is_swing'] != 1] batter_select_id = int(input.batter_id()) # batter_select_name = 'Edouard Julien' df_batter_og = df_2023_bip_train[df_2023_bip_train['batter_id']==batter_select_id] batter_select_name = df_batter_og['batter_name'].values[0] win = min(int(input.rolling_window()),len(df_batter_og)) df_2023_output = df_2023_output_copy[df_2023_output_copy['bip'] >= win] sns.set_theme(style="whitegrid", palette="pastel") #fig, ax = plt.subplots(1, 1, figsize=(10, 10),dpi=300) from matplotlib.gridspec import GridSpec # fig,ax = plt.subplots(figsize=(12, 12),dpi=150) fig = plt.figure(figsize=(12,12)) gs = GridSpec(3, 3, height_ratios=[0.3,10,0.2], width_ratios=[0.01,2,0.01]) axheader = fig.add_subplot(gs[0, :]) ax10 = fig.add_subplot(gs[1, 0]) ax = fig.add_subplot(gs[1, 1]) # Subplot at the top-right position ax12 = fig.add_subplot(gs[1, 2]) axfooter1 = fig.add_subplot(gs[-1, :]) axheader.axis('off') ax10.axis('off') ax12.axis('off') axfooter1.axis('off') sns.lineplot( x= range(win,len(df_batter_og.y_pred.rolling(window=win).mean())+1), y= df_batter_og.y_pred.rolling(window=win).mean().dropna(), color=colour_palette[0],linewidth=2,ax=ax) ax.hlines(y=df_batter_og.y_pred.mean(),xmin=win,xmax=len(df_batter_og),color=colour_palette[0],linestyle='--', label=f'{batter_select_name} Average: {df_batter_og.y_pred.mean():.3f} xSLGCON ({p.ordinal(int(np.around(percentileofscore(df_2023_output["xslgcon"],df_batter_og.y_pred.mean(), kind="strict"))))} Percentile)') # ax.hlines(y=df_model_2023.y_pred_no_swing.std()*100,xmin=win,xmax=len(df_will)) # sns.scatterplot( x= [976], # y= df_will.y_pred.rolling(window=win).mean().min()*100, # color=colour_palette[0],linewidth=2,ax=ax,zorder=100,s=100,edgecolor=colour_palette[7]) ax.hlines(y=df_2023_bip_train['y_pred'].mean(),xmin=win,xmax=len(df_batter_og),color=colour_palette[1],linestyle='-.',alpha=1, label = f'MLB Average: {df_2023_bip_train["y_pred"].mean():.3f} xSLGCON') ax.legend() hard_hit_dates = [df_2023_output['xslgcon'].quantile(0.9), df_2023_output['xslgcon'].quantile(0.75), df_2023_output['xslgcon'].quantile(0.25), df_2023_output['xslgcon'].quantile(0.1)] ax.hlines(y=df_2023_output['xslgcon'].quantile(0.9),xmin=win,xmax=len(df_batter_og),color=colour_palette[2],linestyle='dotted',alpha=0.5,zorder=1) ax.hlines(y=df_2023_output['xslgcon'].quantile(0.75),xmin=win,xmax=len(df_batter_og),color=colour_palette[3],linestyle='dotted',alpha=0.5,zorder=1) ax.hlines(y=df_2023_output['xslgcon'].quantile(0.25),xmin=win,xmax=len(df_batter_og),color=colour_palette[4],linestyle='dotted',alpha=0.5,zorder=1) ax.hlines(y=df_2023_output['xslgcon'].quantile(0.1),xmin=win,xmax=len(df_batter_og),color=colour_palette[5],linestyle='dotted',alpha=0.5,zorder=1) hard_hit_text = ['90th %','75th %','25th %','10th %'] for i, x in enumerate(hard_hit_dates): ax.text(min(win+win/50,win+win+5), x ,hard_hit_text[i], rotation=0,va='center', ha='left', bbox=dict(facecolor='white',alpha=0.7, edgecolor=colour_palette[2+i], pad=2),zorder=11) # # Annotate with an arrow # ax.annotate('June 6, 2023\nSeason Worst Decision Value', xy=(976, df_will.y_pred.rolling(window=win).mean().min()*100-0.03), # xytext=(976 - 150, df_will.y_pred.rolling(window=win).mean().min()*100 - 0.2), # arrowprops=dict(facecolor=colour_palette[7], shrink=0.01),zorder=150,fontsize=10, # bbox=dict(facecolor='white', edgecolor='black'),va='top') ax.set_xlim(win,len(df_batter_og)) # ax.set_ylim(0.2,max(1,)) ax.set_yticks([0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]) ax.set_xlabel('Balls In Play') ax.set_ylabel('Expected Total Bases per Ball In Play (xSLGCON)') from matplotlib.ticker import FormatStrFormatter ax.yaxis.set_major_formatter(FormatStrFormatter('%.3f')) axheader.text(s=f'{batter_select_name} - MLB - {win} Rolling BIP Expected Slugging on Contact (xSLGCON)',x=0.5,y=-0.5,ha='center',va='bottom',fontsize=14) axfooter1.text(.05, 0.2, "By: Thomas Nestico",ha='left', va='bottom',fontsize=12) axfooter1.text(0.95, 0.2, "Data: MLB",ha='right', va='bottom',fontsize=12) fig.subplots_adjust(left=0.01, right=0.99, top=0.98, bottom=0.02) @output @render.plot(alt="A histogram") @reactive.event(input.go, ignore_none=False) def ev_plot(): data_df = df_2023_bip_train[df_2023_bip_train.batter_id==int(input.batter_id())] #pitch_list = df_2023_small.pitch_type.unique() sns.set_theme(style="whitegrid", palette="pastel") fig, ax = plt.subplots(1, 1, figsize=(10, 10)) # if input.plot_id() == 'dist': # sns.histplot(x=data_df.launch_angle,y=data_df.launch_speed,cbar=colour_palette,binwidth=(5,2.5),ax=ax,cbar_kws=dict(shrink=.75,label='Count'),binrange=( # (math.floor((min(data_df.launch_angle.dropna())/5))*5,math.ceil((max(data_df.launch_angle.dropna())/5))*5),(math.floor((min(data_df.launch_speed.dropna())/5))*5,math.ceil((max(data_df.launch_speed.dropna())/5))*5))) sns.scatterplot(x=data_df.launch_angle,y=data_df.launch_speed,color=colour_palette[1]) ax.set_xlim(math.floor((min(data_df.launch_angle.dropna())/10))*10,math.ceil((max(data_df.launch_angle.dropna())/10))*10) #ticks=np.arange(revels.values.min(),revels.values.max()+1 ) sns.lineplot(x=angle_ev_list_df.launch_angle,y=angle_ev_list_df.launch_speed,color=colour_palette[0]) ax.vlines(x=angle_ev_list_df.launch_angle[0],ymin=angle_ev_list_df.launch_speed[0],ymax=ev_ranges[-1],color=colour_palette[0]) ax.vlines(x=angle_ev_list_df.launch_angle[len(angle_ev_list_df)-1],ymin=angle_ev_list_df.launch_speed[len(angle_ev_list_df)-1],ymax=ev_ranges[-1],color=colour_palette[0]) groundball = f'{sum(data_df.launch_angle.dropna()<=10)/len(data_df.launch_angle.dropna()):.1%}' linedrive = f'{sum((data_df.launch_angle.dropna()<=25) & (data_df.launch_angle.dropna()>10))/len(data_df.launch_angle.dropna()):.1%}' flyball = f'{sum((data_df.launch_angle.dropna()<=50) & (data_df.launch_angle.dropna()>25))/len(data_df.launch_angle.dropna()):.1%}' popup = f'{sum(data_df.launch_angle.dropna()>50)/len(data_df.launch_angle.dropna()):.1%}' percentages_list = [groundball,linedrive,flyball,popup] hard_hit_percent = f'{sum(data_df.launch_speed.dropna()>=95)/len(data_df.launch_speed.dropna()):.1%}' barrel_percentage = f'{data_df.barrel.dropna().sum()/len(data_df.launch_angle.dropna()):.1%}' plt.text(x=27, y=math.ceil((max(data_df.launch_speed.dropna())/5))*5+5-3, s=f'Barrel% {barrel_percentage}',ha='left',bbox=dict(facecolor='white',alpha=0.8, edgecolor=colour_palette[4], pad=5)) sample_dates = np.array([math.floor((min(data_df.launch_angle.dropna())/10))*10,10,25,50]) sample_text = [f'Groundball ({groundball})',f'Line Drive ({linedrive})',f'Fly Ball ({flyball})',f'Pop-up ({popup})'] hard_hit_dates = [95] hard_hit_text = [f'Hard Hit% ({hard_hit_percent})'] #sample_dates = mdates.date2num(sample_dates) plt.hlines(y=hard_hit_dates,xmin=math.floor((min(data_df.launch_angle.dropna())/10))*10, xmax=math.ceil((max(data_df.launch_angle.dropna())/10))*10, color = colour_palette[4],linestyles='--') plt.vlines(x=sample_dates, ymin=0, ymax=130, color = colour_palette[3],linestyles='--') # ax.vlines(x=10,ymin=0,ymax=ev_ranges[-1],color=colour_palette[3],linestyles='--') # ax.vlines(x=25,ymin=0,ymax=ev_ranges[-1],color=colour_palette[3],linestyles='--') # ax.vlines(x=50,ymin=0,ymax=ev_ranges[-1],color=colour_palette[3],linestyles='--') for i, x in enumerate(hard_hit_dates): text(math.ceil((max(data_df.launch_angle.dropna())/10))*10-2.5, x+1.25,hard_hit_text[i], rotation=0, ha='right', bbox=dict(facecolor='white',alpha=0.5, edgecolor=colour_palette[4], pad=5)) for i, x in enumerate(sample_dates): text(x+0.75, (math.floor((min(data_df.launch_speed.dropna())/5))*5)+1,sample_text[i], rotation=90, verticalalignment='bottom', bbox=dict(facecolor='white',alpha=0.5, edgecolor=colour_palette[3], pad=5)) #ax.vlines(x=math.floor((min(data_df.launch_angle.dropna())/10))*10+1,ymin=0,ymax=ev_ranges[-1],color=colour_palette[3],linestyles='--') ax.set_xlim((math.floor((min(data_df.launch_angle.dropna())/10))*10,math.ceil((max(data_df.launch_angle.dropna())/10))*10)) ax.set_ylim((math.floor((min(data_df.launch_speed.dropna())/5))*5,math.ceil((max(data_df.launch_speed.dropna())/5))*5+5)) # ax.set_xlim(-90,90) # ax.set_ylim(0,125) ax.set_title(f'MLB - {data_df.batter_name.unique()[0]} Launch Angle vs EV Plot', fontsize=18,fontname='Century Gothic',) #vals = ax.get_yticks() ax.set_xlabel('Launch Angle', fontsize=16,fontname='Century Gothic') ax.set_ylabel('Exit Velocity', fontsize=16,fontname='Century Gothic') ax.fill_between(angle_ev_list_df.launch_angle, 130, angle_ev_list_df.launch_speed, interpolate=True, color=colour_palette[3],alpha=0.1,label='Barrel') #fig.colorbar(plot_dist, ax=ax) #fig.colorbar(plot_dist) #fig.axes[0].invert_yaxis() ax.legend(fontsize='16',loc='upper left') fig.text(x=0.03,y=0.02,s='By: @TJStats') fig.text(x=1-0.03,y=0.02,s='Data: MLB',ha='right') # fig.text(x=0.25,y=0.02,s='Data: MLB',ha='right') # fig.text(x=0.25,y=0.02,s='Data: MLB',ha='right') # fig.text(x=0.25,y=0.02,s='Data: MLB',ha='right') #cbar = plt.colorbar() #fig.subplots_adjust(wspace=.02, hspace=.02) #ax.xaxis.set_major_formatter(FuncFormatter(lambda x, _: int(x))) fig.set_facecolor('white') fig.tight_layout() spray = App(ui.page_fluid( ui.tags.base(href=base_url), ui.tags.div( {"style": "width:90%;margin: 0 auto;max-width: 1600px;"}, ui.tags.style( """ h4 { margin-top: 1em;font-size:35px; } h2{ font-size:25px; } """ ), shinyswatch.theme.simplex(), ui.tags.h4("TJStats"), ui.tags.i("Baseball Analytics and Visualizations"), ui.markdown("""Support me on Patreon for Access to 2024 Apps1"""), ui.navset_tab( ui.nav_control( ui.a( "Home", href="home/" ), ), ui.nav_menu( "Batter Charts", ui.nav_control( ui.a( "Batting Rolling", href="rolling_batter/" ), ui.a( "Spray & Damage", href="spray/" ), ui.a( "Decision Value", href="decision_value/" ), # ui.a( # "Damage Model", # href="damage_model/" # ), ui.a( "Batter Scatter", href="batter_scatter/" ), # ui.a( # "EV vs LA Plot", # href="ev_angle/" # ), ui.a( "Statcast Compare", href="statcast_compare/" ) ), ), ui.nav_menu( "Pitcher Charts", ui.nav_control( ui.a( "Pitcher Rolling", href="rolling_pitcher/" ), ui.a( "Pitcher Summary", href="pitching_summary_graphic_new/" ), ui.a( "Pitcher Scatter", href="pitcher_scatter/" ) ), )),ui.row( ui.layout_sidebar( ui.panel_sidebar( ui.input_select("batter_id", "Select Batter", batter_dict, width=1, size=1, selectize=True), ui.input_action_button("go", "Generate",class_="btn-primary", ), ui.input_action_button("update_ui", "Update UI",class_="btn-secondary", )), ui.page_navbar( ui.nav("2023 vs MLB", ui.output_plot('plot', width='1000px', height='1000px')), ui.nav("Damage Hex", ui.output_plot('hex_plot', width='1200px', height='1200px')), ui.nav("Damage Roll", ui.output_plot('roll_plot', width='1200px', height='1200px')), ui.nav("EV vs LA", ui.output_plot("ev_plot",height = "1000px",width="1000px")),id="my_tabs", ) )),)),server)